最长不下降子序列实现:

利用序列的单调性

  对于任意一个单调序列,如 1 2 3 4 5(是单增的),若这时向序列尾部增添一个数 x,我们只会在意 x 和 5 的大小,若 x>5,增添成功,反之则失败。由于普通代码是从头开始比较,而 x 和 1,2,3,4 的大小比较是没有用处的,这种操作只会造成时间的浪费,所以效率极低。对于单调序列,只需要记录每个序列的最后一个数,每增添一个数 x,直接比较 x 和末尾数的大小。只有最后一个数才是有用的,它表示该序列的最大限度值。

  实现方法就是新开一个数组 d,用它来记录每个序列的末尾元素,以求最长不下降为例,d[k] 表示长度为k的不下降子序列的最小末尾元素。

  我们用 len 表示当前凑出的最长序列长度,也就是当前 d 中的最后那个位置。

  这样就很 easy 了,每读入一个数 x,如果 x 大于等于 d[len],直接让 d[len+1]=x,然后 len++,相当于把 x 接到了最长的序列后面;

  如果 x 小于 d[len],说明 x 不能接到最长的序列后面,那就找 d[1...len−1] 中末尾数小于等于 x 的的序列,然后把 x 接到它后面。举个例子,若当前 x==7,len==8:

1

2

3

4

5

6

7

8

2

3

4

7

7

10

12

29

  d[1]⋯d[5] 均小于等于 x,若在 d[1] 后接 x,则 d[2] 应换成 x,但 d[2]==3,比 x 小,能接更多的数,用 7 去换 3 显然是不划算的,所以 x 不能接 d[1] 后。同理,d[2]⋯d[4] 均不能接x。由于 d[5]≤x 且 x<d[6],7 能比 10 接更多的数,所以选择在 d[5] 后接 x,用 x 替换 10。

  根据这个操作过程,易知数组 d 一定是单调的序列,所以查找的时候可以用二分!二分效率是 logn 的,所以整个算法的效率就是 nlogn 的啦~

输出序列实现:

想了好久,认为 nlogn 做法也是可以输出序列的,这时候需要增加一个 c 数组 用来记录每个元素在最长序列中的位置,即 c[i] 表示 a[i] 被放到了序列的第几个位置。

  输出时,从 数组 a 的尾部开始,逆序依次找出 c 为 len, len-1, len-2 … 3, 2, 1 的元素,并且找到一个就接着寻找 c[i]-1,直到找到 c[i] 为 1 的数。

  举个例子:

a: 13 7 9 16 38 24 37 18 44 19 21 22 63 15
c: 1 1 2 3 4 4 5 4 6 5 6 7 8 3

  len = 8;

  我们从 15 开始倒着找 c 为 8 的元素,找到 63,接着找 c 为 7 的,找到 22,再找 c 为 6 的,找到 21,再找 c 为 5 …… 以此类推。

  从而,我们得出的序列为 63,22,21,19,18,16,9,7

  逆序输出来,就是 7,9,16,18,19,21,22,63

  为什么这个方法是对的呢?倒序查找保证了两个条件:

    - 如果 c 中有多个相同的数,后面的一定是最新更新的;

    - 在保证一条件的前提下,倒序找,后面的数一定可以接到前面数的后面。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define int long long
#define maxn 1000+10
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int n,len;
int a[maxn],last[maxn],site[maxn];
stack<int> s;
signed main()
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
if(n==)
{
write();
return ;
}
len=;
last[]=a[];
site[]=;
for(int i=;i<=n;i++)
{
if(a[i]>=last[len])
{
last[++len]=a[i];
site[i]=len;
}
else
{
int now=lower_bound(last+,last+len+,a[i])-last;
last[now]=a[i];
site[i]=now;
}
}
printf("max=");
write(len);
printf("\n");
for(int i=n,j=len;i>=;i--)
{
if(site[i]==j)
{
s.push(a[i]);
j--;
}
if(j==) break;
}
while(!s.empty())
{
int put=s.top();
s.pop();
write(put);
printf(" ");
}
return ;
}

请各位大佬斧正(反正我不认识斧正是什么意思)

最长不下降子序列 nlogn && 输出序列的更多相关文章

  1. 最长不下降子序列nlogn算法详解

    今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...

  2. hdu1025 最长不下降子序列nlogn算法

    C - DP Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit I ...

  3. 最长不下降子序列nlogn

    b[i]表示长度为i的最长不下降子序列的最小末尾元素的值显然它是单调递增的,满足二分性质,然后就可以愉快地二分啦. #include<iostream> #include<cstdi ...

  4. 最长不下降子序列(线段树优化dp)

    最长不下降子序列 题目大意: 给定一个长度为 N 的整数序列:A\(_{1}\),A\(_{2}\),⋅⋅⋅,A\(_{N}\). 现在你有一次机会,将其中连续的 K 个数修改成任意一个相同值. 请你 ...

  5. tyvj 1049 最长不下降子序列 n^2/nlogn

    P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...

  6. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

  7. 最长不下降子序列//序列dp

    最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...

  8. P1020 导弹拦截(nlogn求最长不下降子序列)

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  9. hdu 1160 FatMouse's Speed(最长不下降子序列+输出路径)

    题意: FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to ...

随机推荐

  1. spring session cpu占用过高

      集成spring session很简单,只需几行代码即可. @Configuration @EnableRedisHttpSession public class SessionConfig { ...

  2. Android--Facebook Login with LoginButton

    1.Layout文件添加Facebook的LoginBurtton <com.facebook.widget.LoginButton android:id="@+id/authButt ...

  3. git clone一个仓库下的单个文件【记录】

    注意:本方法会下载整个项目,但是,最后出现在本地项目文件下里只有需要的那个文件夹存在.类似先下载,再过滤. 有时候因为需要我们只想gitclone 下仓库的单个或多个文件夹,而不是全部的仓库内容,这样 ...

  4. Linux中添加用户与删除用户

    注意:添加用户和删除用户需要root来执行. 添加用户 用useradd命令,例如: # useradd -d/home/tom -s/bin/bash -u1000 tom  这样就添加了新用户to ...

  5. ES6之reduce和reduceRight方法应用实例

    for循环是最基本的遍历循环,但是有些时候并不是很实用,且效率和性能较低,故本文列举出工作学习中碰到的reduce方法应用实例,供自己揣摩熟练应用,以提高自己的研发水平和研发效率. reduce方法( ...

  6. Mycat分布式数据库架构解决方案--rule.xml详解

    echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 该文件 ...

  7. Imagetragick RCE(CVE-2016–3714)复现

    CVE-2016–3714: 闲着没事突然想起这个洞来,借用vulhub复现一下 poc有很多:https://github.com/ImageTragick/PoCs 我用的 push graphi ...

  8. JDK的安装(mac)

    1.第一步安装brew 教学网址 2.用brew安装jdk. brew update brew cask install java(未翻墙时长很长,大概猴年马月两个小时) 安装完成后就可以执行JAVA ...

  9. ArrayList集合实现RandomAccess接口有何作用?为何LinkedList集合却没实现这接口

    详见:https://blog.csdn.net/weixin_39148512/article/details/79234817 众所周知,在List集合中,我们经常会用到ArrayList以及Li ...

  10. grpc的简单用例 (golang实现)

    这个用例的逻辑很简单, 服务器运行一个管理个人信息的服务, 提供如下的四个服务: (1) 添加一个个人信息 注: 对应于Unary RPCs, 客户端发送单一消息给服务器, 服务器返回单一消息 (2) ...