问题描述:

给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大?

细节须知:

暂无。

算法原理:

a.最优子结构性质

0-1背包问题具有最优子结构性质。设(y1,y2,…,yn)是所给0-1背包问题的一个最优解,则(y2,…,yn)是下面相应子问题的一个最优解。

b.递归关系

设所给0-1背包问题的子问题

的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。有0-1背包问题的最优子结构性质,可以建立如下计算m(i,j)的递归式

 #include <iostream>
#include <fstream>
#include <ctime>
#include <algorithm>
#include <windows.h>
using namespace std;
#define N 10000 //int w[5] = { 0 , 2 , 3 , 4 , 5 }; //商品的体积2、3、4、5
//int v[5] = { 0 , 3 , 4 , 5 , 6 }; //商品的价值3、4、5、6
//int bagV = 8; //背包大小
int dp[N][N]; //动态规划表
//int item[5]; //最优解情况 void findMax(int k,int n,int w[],int v[]) { //动态规划
for (int i = ; i <= k; i++) {
for (int j = ; j <= n; j++) {
if (j < w[i])
dp[i][j] = dp[i - ][j];
else
dp[i][j] = max(dp[i - ][j], dp[i - ][j - w[i]] + v[i]);
}
}
} void findWhat(int i, int j,int w[],int v[],int item[]) { //最优解情况
if (i > ) {
if (dp[i][j] == dp[i - ][j]) {
item[i] = ;
findWhat(i - , j,w,v,item);
}
else if (j - w[i] >= && dp[i][j] == dp[i - ][j - w[i]] + v[i]) {
item[i] = ;
findWhat(i - , j - w[i],w,v,item);
}
}
} void print(int k,int n,int item[]) {
/*for (int i = 0; i < k+1; i++) { //动态规划表输出
for (int j = 0; j < n+1; j++) {
cout << dp[i][j] << ' ';
}
cout << endl;
}
cout << endl;*/
cout <<"The item number that should be put into the backpack is:";
for (int i = ; i < k+; i++){ //最优解输出
if(item[i] == )
cout << i << ' ';
}
cout << endl;
} int main(void)
{
LARGE_INTEGER nFreq;
LARGE_INTEGER nBeginTime;
LARGE_INTEGER nEndTime;
ofstream fout;
double cost;
int i,j,m,n,k;
cout << "Please enter the number of times you want to run the program:";
cin >> m;
//int object_amount[m];
//double runtime[m];
fout.open("backpack.txt",ios::app);
if(!fout){
cerr<<"Can not open file 'backpack.txt' "<<endl;
return -;
}
fout.setf(ios_base::fixed,ios_base::floatfield); //防止输出的数字使用科学计数法
srand((unsigned int)time(NULL));
for(i = ; i < m; i++){
n = rand()%;
k = rand()%;
//object_amount[i] = k;
fout<<k<<",";
int item[k];
cout << "The " << i+ << "th test's backpack lattice number is:" << n << endl;
cout << "The " << i+ << "th test's object amount is:" << k << endl;
int w[k];
int v[k];
memset(dp,,sizeof(dp));
w[] = ;
v[] = ;
for(j=;j<k;j++){
w[j]=rand()%;
v[j]=rand()%;
}
QueryPerformanceFrequency(&nFreq);
QueryPerformanceCounter(&nBeginTime);
findMax(k,n,w,v);
findWhat(k,n,w,v,item);
print(k,n,item);
QueryPerformanceCounter(&nEndTime);
cost=(double)(nEndTime.QuadPart - nBeginTime.QuadPart) / (double)nFreq.QuadPart;
//runtime[i]=cost;
fout<<cost<<endl;
cout<<"The running time is:"<<cost<<" s"<<endl;
}
/* fout.open("backpack.txt",ios::app);
if(!fout){
cerr<<"Can not open file 'backpack.txt' "<<endl;
return -1;
}
fout.setf(ios_base::fixed,ios_base::floatfield); //防止输出的数字使用科学计数法
for(i=0;i<m;i++){
fout<<object_amount[i]<<","<<runtime[i]<<endl;
}*/
fout.close();
cout<<"Success!"<<endl;
return ;
}

程序设计思路:

根据算法原理中所述递归关系,递归计算全部的m(i,j),得到不同情况下的最优解。

假设m[1][c]给出所要求的的0-1背包问题的最优值。相应的最优解计算如下:

如果m[1][c]=m[2][c],则x1=0;否则x1=1.当x1=0是,由m[2][c]继续构造最优解;当x1=1时,有m[2][c-w1]继续构造最优解。以此类推,可构造出相应的最优解(x1,x2,…,xn)。

时间复杂性分析:

从计算m(i,j)的递归式容易看出,对于0-1背包问题的求解算法需要O(nc)计算时间,而算法解出最优方案需要O(n)计算时间,当背包容量c很大时,算法需要的计算时间较多。

生成的数据可导入EXCEL中进行数据分析生成分析图表。

C++动态规划求解0-1背包问题的更多相关文章

  1. Java实现动态规划法求解0/1背包问题

    摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...

  2. hdu2602Bone Collector ——动态规划(0/1背包问题)

    Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collec ...

  3. 背包问题(Knapsack problem)采用动态规划求解

    问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号.单价与重量如下所示:0李子4KGNT$45001苹果5KGNT$57002橘子2 ...

  4. 0-1背包问题——动态规划求解【Python】

    动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...

  5. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  6. 蓝桥杯 0/1背包问题 (java)

      今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...

  7. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  8. 动态规划:HDU1059-Dividing(多重背包问题的二进制优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. 动态规划求解序列问题(LIS、JLIS)

    1. 最长递增子序列 不要求位置连续:要求大小严格递增(strictly increasing) 穷举法解题 首先以每个数字为单位分割寻找最长递增子序列: int lis(const vector&l ...

随机推荐

  1. 尝试在Mac/iOS上使用tcmalloc库

    概述        TCMalloc 是 Google 开发的内存分配器,在不少项目中都有使用,例如在 Golang 中就使用了类似的算法进行内存分配.它具有现代化内存分配器的基本特征:对抗内存碎片. ...

  2. android studio学习----添加项目依赖包补充---添加github上的开源项目为库

    导入maven中的库 如果开源库作者有将代码放到Maven库中,我们可以在gradle配置中直接引入,类似如下: compile 'com.github.dmytrodanylyk.android-p ...

  3. 设计模式:单例(Sigleton)模式

    题目:设计一个类,我们只能生成该类的一个实例. 只能生成一个实例的类是实现了Singleton(单例)模式的类型. 相关知识: 这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象 ...

  4. Spark GraphX图计算核心算子实战【AggreagteMessage】

    一.简介 参考博客:https://www.cnblogs.com/yszd/p/10186556.html 二.代码实现 package graphx import org.apache.log4j ...

  5. 『计算机视觉』imgaug图像增强库中部分API简介

    https://github.com/aleju/imgaug 介绍一下官方demo中用到的几个变换,工程README.md已经给出了API简介,个人觉得不好理解,特此单独记录一下: import n ...

  6. idea 2019 集成activiti, idea activiti 新建bpmn文件, 解决idea activiti中文乱码

    idea 在线安装activiti插件 1. File-->Settings 2. 点击Plugins, 右侧界面点击Marketplace后在搜索框搜索 actiBPM 注: 网络原因没有加载 ...

  7. 安装Ubuntu后需要做的事

    卸载软件 纸牌 麻将 扫雷 数独 火狐 邮件 扫描 拍照 照片 视频 计划 日历 打印 备份 计算器 亚马逊 电源统计 音乐播放 远程桌面 To Do LibreOffice 换下载源 装机的时候下载 ...

  8. 大众点评评论数据抓取 反爬虫措施有css文字映射和字体库反爬虫

    大众点评评论数据抓取  反爬虫措施有css文字映射和字体库反爬虫 大众点评的反爬虫手段有那些: 封ip,封账号,字体库反爬虫,css文字映射,图形滑动验证码 这个图片是滑动验证码,访问频率高的话,会出 ...

  9. gitlab 提示:remote: The project you were looking for could not be found.

    解决: git remote remove origin git remote add origin https://your_git_user_name@git.qutoutiao.net/your ...

  10. Scrapy笔记05- Item详解

    Scrapy笔记05- Item详解 Item是保存结构数据的地方,Scrapy可以将解析结果以字典形式返回,但是Python中字典缺少结构,在大型爬虫系统中很不方便. Item提供了类字典的API, ...