P-R曲线就是精确率precision vs 召回率recall 曲线,以recall作为横坐标轴,precision作为纵坐标轴。首先解释一下精确率和召回率。

解释精确率和召回率之前,先来看下混淆矩阵,

负      正
 负 TN  FP 
 正  FN  TP

把正例正确分类为正例,表示为TP(true positive),把正例错误分类为负例,表示为FN(false negative),

把负例正确分类为负例,表示为TN(true negative), 把负例错误分类为正例,表示为FP(false positive)

精确率和召回率可以从混淆矩阵中计算而来,precision = TP/(TP + FP), recall = TP/(TP +FN)

那么P-R曲线是怎么来的呢?

算法对样本进行分类时,都会有置信度,即表示该样本是正样本的概率,比如99%的概率认为样本A是正例,1%的概率认为样本B是正例。通过选择合适的阈值,比如50%,对样本进行划分,概率大于50%的就认为是正例,小于50%的就是负例。

通过置信度就可以对所有样本进行排序,再逐个样本的选择阈值,在该样本之前的都属于正例,该样本之后的都属于负例。每一个样本作为划分阈值时,都可以计算对应的precision和recall,那么就可以以此绘制曲线。那很多书上、博客上给出的P-R曲线,都长这样

当然,这种曲线是有可能的。但是仔细琢磨就会发现一些规律和一些问题。

根据逐个样本作为阈值划分点的方法,可以推敲出,recall值是递增的(但并非严格递增),随着划分点左移,正例被判别为正例的越来越多,不会减少。而精确率precision并非递减,二是有可能振荡的,虽然正例被判为正例的变多,但负例被判为正例的也变多了,因此precision会振荡,但整体趋势是下降。

另外P-R曲线肯定会经过(0,0)点,比如讲所有的样本全部判为负例,则TP=0,那么P=R=0,因此会经过(0,0)点,但随着阈值点左移,precision初始很接近1,recall很接近0,因此有可能从(0,0)上升的线和坐标重合,不易区分。如果最前面几个点都是负例,那么曲线会从(0,0)点开始逐渐上升。

曲线最终不会到(1,0)点。很多P-R曲线的终点看着都是(1,0)点,这可能是因为负例远远多于正例。

最后一个点表示所有的样本都被判为正例,因此FN=0,所以recall = TP/(TP + FN) = 1, 而FP = 所有的负例样本数,因此precision = TP/(TP+FP) = 正例的占所有样本的比例,故除非负例数很多,否则precision不会为0.

因此,较合理的P-R曲线应该是(曲线一开始被从(0,0)拉升到(0,1),并且前面的都预测对了,全是正例,因此precision一直是1,)

另外,如果有个划分点可以把正负样本完全区分开,那么P-R曲线就是整个1*1的面积。

总之,P-R曲线应该是从(0,0)开始画的一条曲线,切割1*1的正方形,得到一块区域。
---------------------
作者:keep_forward
来源:CSDN
原文:https://blog.csdn.net/b876144622/article/details/80009867
版权声明:本文为博主原创文章,转载请附上博文链接!

P-R曲线深入理解的更多相关文章

  1. 机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)

    一.Precision - Recall 的平衡 1)基础理论 调整阈值的大小,可以调节精准率和召回率的比重: 阈值:threshold,分类边界值,score > threshold 时分类为 ...

  2. 深度掌握SVG路径path的贝塞尔曲线指令

    一.数字.公式.函数.变量,哦,NO! 又又一次说起贝塞尔曲线(英语:Bézier curve,维基百科详尽中文释义戳这里),我最近在尝试实现复杂的矢量图形动画,发现对贝塞尔曲线的理解馒头那么厚,是完 ...

  3. 机器学习:评价分类结果(ROC 曲线)

    一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...

  4. View绘制过程理解

    假期撸了几篇自定义View相关的东西,后两天下雨呆在家里还是效率太低Orz   每个Activity都包含一个Window对象,这个Window对象通常由PhoneWindow来实现[1],而每个Wi ...

  5. R语言介绍

    R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,是贝尔实验室(Bell Laboratories)的Rick Becker.John Chambers和Allan Wilks开发的S语言 ...

  6. SVG 学习<八> SVG的路径——path(2)贝塞尔曲线命令、光滑贝塞尔曲线命令

    目录 SVG 学习<一>基础图形及线段 SVG 学习<二>进阶 SVG世界,视野,视窗 stroke属性 svg分组 SVG 学习<三>渐变 SVG 学习<四 ...

  7. 【转】R语言知识体系概览

    摘要:R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言. 最近遇到很多的程序员都想转行到数据分析,于是就开 ...

  8. 《R实战》读书笔记二

    第一章 R简单介绍 本章概要 1安装R 2理解R语言 3执行R程序 本章所介绍的内容概括例如以下. 一个典型的数据分析步骤如图1所看到的. 图1:典型数据分析步骤 简而言之,现今的数据分析要求我们从多 ...

  9. 如何高效地学好R语言?

    如何高效地学好R语言? 学R语言主要在于5点三阶段: 第一阶段有一点:基础的文件操作(read.*, write.*).数据结构知识,认识什么是数据框(data.frame).列表(list).矩阵( ...

随机推荐

  1. WinDbg常用命令系列---显示数字格式化.formats

    .formats (Show Number Formats) .formats命令在当前线程和进程的上下文中计算表达式或符号,并以多种数字格式显示它. .formats expression 参数: ...

  2. 通过USB 2.0电缆手动设置内核模式调试

    Windows的调试工具支持通过USB 2.0电缆进行内核调试.本文介绍如何手动设置USB 2.0调试.通过USB 2.0电缆进行调试需要以下硬件: USB 2.0调试电缆.此电缆不是标准USB 2. ...

  3. Redis存储Sortedset

    与set相比Sortedset多了一个数字与set中的各个元素相关联. 存储结构: 1.添加元素: 添加元素的时候元素一定不能相同,如果已存在该元素,表示插入失败返回0,成功返回1,但是不同元素的数字 ...

  4. snmp-get

    使用mibbroser可以连接到监控主机,可以获取主机mib信息 使用walk出的oid就可以获取到对应的值, 使用 -O fn 可以将返回的字符创形式的键改为数字型oid oid还有一种字符串的形式 ...

  5. chmod/chown/chgrp/chattr

    权限组合其实就是二进制的组合 注意,用户只能修改属于自己的文件 仅管理员可以修改文件的数组和属主 chmod 三种使用方法 文件的特殊权限 SUID SGID Sticky chowm 修改文件,目录 ...

  6. canvas做动画

    一.绘制图片 ①加载图片 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  7. PowerDesigner 画流程图

    原因: 以前赶时间写了n长一个类,现在又增加新需求了,but以前怎么写的忘了,虽然注释都有,一个一个方法的看很累,准备把它用面向对象改造一下,不知道时间够不,先试一试在说.之前设计数据库用的Power ...

  8. 如何解决数据类别不平衡问题(Data with Imbalanced Class)

    类别不平衡问题是指:在分类任务中,数据集中来自不同类别的样本数目相差悬殊. 类别不平衡问题会造成这样的后果:在数据分布不平衡时,其往往会导致分类器的输出倾向于在数据集中占多数的类别:输出多数类会带来更 ...

  9. 随机采样方法整理与讲解(Acceptance-Rejection、MCMC、Gibbs Sampling等)

    本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...

  10. Linux 备份工具dump

    dump的功能很强,除了可以备份整个文件外,还能够针对目录来备份,还可以指定等级.什么意思呢?假设你的/home是独立的一个 文件系统,那你第一次进行过dump后,再进行第二次dump时,可以指定不同 ...