pandas 之 索引重塑
import numpy as np
import pandas as pd
There are a number of basic operations for rearanging tabular data. These are alternatingly referred to as reshape or pivot operations.
多层索引重塑
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame. There are two primary actions:
stack - 列拉长index
This "rotates" or pivots from the columns in the data to the rows.
unstack
This pivots from the rows into the columns.
I'll illustrate these operations through a series of examples. Consider a small DataFrame with string arrays as row and column indexes:
data = pd.DataFrame(np.arange(6).reshape((2, 3)),
index=pd.Index(['Ohio', 'Colorado'], name='state'),
columns=pd.Index(['one', 'two', 'three'],
name='number'))
data
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| number | one | two | three |
|---|---|---|---|
| state | |||
| Ohio | 0 | 1 | 2 |
| Colorado | 3 | 4 | 5 |
Using the stack method on this data pivots the columns into the rows, producing a Series.
"stack 将每一行, 叠成一个Series, 堆起来"
result = data.stack()
result
'stack 将每一行, 叠成一个Series, 堆起来'
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int32
From a hierarchically indexed Series, you can rearrage the data back into a DataFrame with unstack
"unstack 将叠起来的Series, 变回DF"
result.unstack()
'unstack 将叠起来的Series, 变回DF'
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| number | one | two | three |
|---|---|---|---|
| state | |||
| Ohio | 0 | 1 | 2 |
| Colorado | 3 | 4 | 5 |
By default the innermost level is unstacked(same with stack). You can unstack a different level by passing a level number or name.
result.unstack(level=0)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| state | Ohio | Colorado |
|---|---|---|
| number | ||
| one | 0 | 3 |
| two | 1 | 4 |
| three | 2 | 5 |
result.unstack(level='state')
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| state | Ohio | Colorado |
|---|---|---|
| number | ||
| one | 0 | 3 |
| two | 1 | 4 |
| three | 2 | 5 |
Unstacking might introduce missing data if all of the values in the level aren't found in each of the subgroups.
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
data2 = pd.concat([s1, s2], keys=['one', 'two'])
data2
one a 0
b 1
c 2
d 3
two c 4
d 5
e 6
dtype: int64
data2.unstack() # 外连接哦
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| a | b | c | d | e | |
|---|---|---|---|---|---|
| one | 0.0 | 1.0 | 2.0 | 3.0 | NaN |
| two | NaN | NaN | 4.0 | 5.0 | 6.0 |
%time data2.unstack().stack()
Wall time: 5 ms
one a 0.0
b 1.0
c 2.0
d 3.0
two c 4.0
d 5.0
e 6.0
dtype: float64
%time data2.unstack().stack(dropna=False)
Wall time: 3 ms
one a 0.0
b 1.0
c 2.0
d 3.0
e NaN
two a NaN
b NaN
c 4.0
d 5.0
e 6.0
dtype: float64
When you unstack in a DataFrame, the level unstacked becomes the lowest level in the result:
df = pd.DataFrame({'left': result, 'right': result + 5},
columns=pd.Index(['left', 'right'], name='side'))
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| side | left | right | |
|---|---|---|---|
| state | number | ||
| Ohio | one | 0 | 5 |
| two | 1 | 6 | |
| three | 2 | 7 | |
| Colorado | one | 3 | 8 |
| two | 4 | 9 | |
| three | 5 | 10 |
df.unstack("state")
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead tr th {
text-align: left;
}
.dataframe thead tr:last-of-type th {
text-align: right;
}
| side | left | right | ||
|---|---|---|---|---|
| state | Ohio | Colorado | Ohio | Colorado |
| number | ||||
| one | 0 | 3 | 5 | 8 |
| two | 1 | 4 | 6 | 9 |
| three | 2 | 5 | 7 | 10 |
When calling stack, we can indicate the name of the axis to stack:
%time df.unstack('state').stack('side')
Wall time: 118 ms
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| state | Colorado | Ohio | |
|---|---|---|---|
| number | side | ||
| one | left | 3 | 0 |
| right | 8 | 5 | |
| two | left | 4 | 1 |
| right | 9 | 6 | |
| three | left | 5 | 2 |
| right | 10 | 7 |
长转宽形
A common way to store multiple time series in databases and CSV is in so-called long or stacked format. Let's load some example data and do a small amonut of time series wrangling and other data cleaning:
%%time
data = pd.read_csv("../examples/macrodata.csv")
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 203 entries, 0 to 202
Data columns (total 14 columns):
year 203 non-null float64
quarter 203 non-null float64
realgdp 203 non-null float64
realcons 203 non-null float64
realinv 203 non-null float64
realgovt 203 non-null float64
realdpi 203 non-null float64
cpi 203 non-null float64
m1 203 non-null float64
tbilrate 203 non-null float64
unemp 203 non-null float64
pop 203 non-null float64
infl 203 non-null float64
realint 203 non-null float64
dtypes: float64(14)
memory usage: 22.3 KB
Wall time: 142 ms
data.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| year | quarter | realgdp | realcons | realinv | realgovt | realdpi | cpi | m1 | tbilrate | unemp | pop | infl | realint | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1959.0 | 1.0 | 2710.349 | 1707.4 | 286.898 | 470.045 | 1886.9 | 28.98 | 139.7 | 2.82 | 5.8 | 177.146 | 0.00 | 0.00 |
| 1 | 1959.0 | 2.0 | 2778.801 | 1733.7 | 310.859 | 481.301 | 1919.7 | 29.15 | 141.7 | 3.08 | 5.1 | 177.830 | 2.34 | 0.74 |
| 2 | 1959.0 | 3.0 | 2775.488 | 1751.8 | 289.226 | 491.260 | 1916.4 | 29.35 | 140.5 | 3.82 | 5.3 | 178.657 | 2.74 | 1.09 |
| 3 | 1959.0 | 4.0 | 2785.204 | 1753.7 | 299.356 | 484.052 | 1931.3 | 29.37 | 140.0 | 4.33 | 5.6 | 179.386 | 0.27 | 4.06 |
| 4 | 1960.0 | 1.0 | 2847.699 | 1770.5 | 331.722 | 462.199 | 1955.5 | 29.54 | 139.6 | 3.50 | 5.2 | 180.007 | 2.31 | 1.19 |
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')
# 修改列索引名
data = data.reindex(columns=columns)
data.index = periods.to_timestamp('D', 'end')
ldata = data.stack().reset_index().rename(columns={0:'value'})
ldata[:10]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| date | item | value | |
|---|---|---|---|
| 0 | 1959-03-31 | realgdp | 2710.349 |
| 1 | 1959-03-31 | infl | 0.000 |
| 2 | 1959-03-31 | unemp | 5.800 |
| 3 | 1959-06-30 | realgdp | 2778.801 |
| 4 | 1959-06-30 | infl | 2.340 |
| 5 | 1959-06-30 | unemp | 5.100 |
| 6 | 1959-09-30 | realgdp | 2775.488 |
| 7 | 1959-09-30 | infl | 2.740 |
| 8 | 1959-09-30 | unemp | 5.300 |
| 9 | 1959-12-31 | realgdp | 2785.204 |
This is so-called long format for multiple time series, or other observational data with two or more keys. Each row in the table represents a single observation.
Data is frequently stored this way in relational databases like MySQL, as a fixed schema allows the number of distinct values in the item columns to change as data is added to the table. In the previous example, date and keys offering both relational integrity and easier joins. In some cases, the data may be more difficult to work with in this format; you might prefer to have a DataFrame containing one column per distinct item value indexed by timestamps in the date column. DataFrame's pivot method performs exactly this transformation:
pivoted = ldata.pivot('date', 'item', 'value')
pivoted[:5]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| item | infl | realgdp | unemp |
|---|---|---|---|
| date | |||
| 1959-03-31 | 0.00 | 2710.349 | 5.8 |
| 1959-06-30 | 2.34 | 2778.801 | 5.1 |
| 1959-09-30 | 2.74 | 2775.488 | 5.3 |
| 1959-12-31 | 0.27 | 2785.204 | 5.6 |
| 1960-03-31 | 2.31 | 2847.699 | 5.2 |
The first two values passed are the columns to be used respectively as the row and column index, then finally an optional value column to fill the DataFrame. Suppose you had two value columns that you wanted to reshape simultaneously:
ldata['valu2'] = np.random.randn(len(ldata))
ldata[:10]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| date | item | value | valu2 | |
|---|---|---|---|---|
| 0 | 1959-03-31 | realgdp | 2710.349 | -0.143460 |
| 1 | 1959-03-31 | infl | 0.000 | -0.422318 |
| 2 | 1959-03-31 | unemp | 5.800 | 0.389872 |
| 3 | 1959-06-30 | realgdp | 2778.801 | -0.208526 |
| 4 | 1959-06-30 | infl | 2.340 | -1.538956 |
| 5 | 1959-06-30 | unemp | 5.100 | -0.143273 |
| 6 | 1959-09-30 | realgdp | 2775.488 | 0.385763 |
| 7 | 1959-09-30 | infl | 2.740 | 0.564365 |
| 8 | 1959-09-30 | unemp | 5.300 | 0.266295 |
| 9 | 1959-12-31 | realgdp | 2785.204 | -1.267871 |
By omitting the last argument, you obtain a DataFrame with hierarchical columns:
Wide to Long
An inverse operation to pivot for DataFrame is pandas.melt. Rather than transroming one columns into many in a new DataFrame, it merges multiple columns into one, producing a DataFrame that is longer than the input, Let's look at an example:
df = pd.DataFrame({
'key': ['foo', 'bar', 'baz'],
'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9]
})
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| key | A | B | C | |
|---|---|---|---|---|
| 0 | foo | 1 | 4 | 7 |
| 1 | bar | 2 | 5 | 8 |
| 2 | baz | 3 | 6 | 9 |
The 'key' columns may be a group indicator, and the other columns are data values. When using pandas.melt, we must indicate which colmuns are group indicators Let's use 'key' as the only group indicator here:
melted = pd.melt(df, ['key'])
melted
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| key | variable | value | |
|---|---|---|---|
| 0 | foo | A | 1 |
| 1 | bar | A | 2 |
| 2 | baz | A | 3 |
| 3 | foo | B | 4 |
| 4 | bar | B | 5 |
| 5 | baz | B | 6 |
| 6 | foo | C | 7 |
| 7 | bar | C | 8 |
| 8 | baz | C | 9 |
Using pivot, we can reshape back to the original layout:(布局)
reshaped = melted.pivot('key', 'variable', 'value')
reshaped
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| variable | A | B | C |
|---|---|---|---|
| key | |||
| bar | 2 | 5 | 8 |
| baz | 3 | 6 | 9 |
| foo | 1 | 4 | 7 |
Since the result of pivot creats an index from the column used as the row labels, we may want to use reset_index to move the data back into a column:
reshaped.reset_index()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| variable | key | A | B | C |
|---|---|---|---|---|
| 0 | bar | 2 | 5 | 8 |
| 1 | baz | 3 | 6 | 9 |
| 2 | foo | 1 | 4 | 7 |
You can also specify a subset of columns to use as value columns:
pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| key | variable | value | |
|---|---|---|---|
| 0 | foo | A | 1 |
| 1 | bar | A | 2 |
| 2 | baz | A | 3 |
| 3 | foo | B | 4 |
| 4 | bar | B | 5 |
| 5 | baz | B | 6 |
pandas.melt can be used without any group identifiers, too:
pd.melt(df, value_vars=['A', 'B', 'C'])
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| variable | value | |
|---|---|---|
| 0 | A | 1 |
| 1 | A | 2 |
| 2 | A | 3 |
| 3 | B | 4 |
| 4 | B | 5 |
| 5 | B | 6 |
| 6 | C | 7 |
| 7 | C | 8 |
| 8 | C | 9 |
pd.melt(df, value_vars=['key', 'A', 'B'])
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| variable | value | |
|---|---|---|
| 0 | key | foo |
| 1 | key | bar |
| 2 | key | baz |
| 3 | A | 1 |
| 4 | A | 2 |
| 5 | A | 3 |
| 6 | B | 4 |
| 7 | B | 5 |
| 8 | B | 6 |
小结
Now that you have some pandas basics for data import, clearning, and reorganization under your belt, we are ready to move on to data visualization with matplotlib. We will return to pandas later in the book when we discuss more advance analytics.
pandas 之 索引重塑的更多相关文章
- pandas重置索引的几种方法探究
pandas重置索引的几种方法探究 reset_index() reindex() set_index() 函数名字看起来非常有趣吧! 不仅如此. 需要探究. http://nbviewer.jupy ...
- (三)pandas 层次化索引
pandas层次化索引 1. 创建多层行索引 1) 隐式构造 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组 Series也可以创建多层索引 import numpy ...
- pandas 数据索引与选取
我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列.区域.单元格.其对应使用的方法如下:一. 行,列 --> df[]二. 区域 --> df.loc[], df.ilo ...
- Pandas之索引
Pandas的标签处理需要分成多种情况来处理,Series和DataFrame根据标签索引数据的操作方法是不同的,单列索引和双列索引的操作方法也是不同的. 单列索引 In [2]: import pa ...
- pandas重新索引
#重新索引会更改DataFrame的行标签和列标签.重新索引意味着符合数据以匹配特定轴上的一组给定的标签. #可以通过索引来实现多个操作 - #重新排序现有数据以匹配一组新的标签. #在没有标签数据的 ...
- pandas DataFrame 索引(iloc 与 loc 的区别)
Pandas--ix vs loc vs iloc区别 0. DataFrame DataFrame 的构造主要依赖如下三个参数: data:表格数据: index:行索引: columns:列名: ...
- Pandas重建索引
重新索引会更改DataFrame的行标签和列标签.重新索引意味着符合数据以匹配特定轴上的一组给定的标签. 可以通过索引来实现多个操作 - 重新排序现有数据以匹配一组新的标签. 在没有标签数据的标签位置 ...
- pandas层级索引1
层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...
- pandas层级索引
层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...
随机推荐
- day 18
Only through experience of trial and suffering can the soul be strengthened, vision cleared, ambitio ...
- Spring Boot 构造器参数绑定,越来越强大了!
在之前的文章:Spring Boot读取配置的几种方式,我介绍到 Spring Boot 中基于 Java Bean 的参数绑定,在一个 Java Bean 类上用 @ConfigurationPro ...
- Certification information不能过大
/* If certification information is too big this event can't be transmitted as it would cause failure ...
- Navicat连接mysql数据库2003-Can't connect to Mysql server on 'xxx' (10060 "Unknown error")
使用root账号连接MySQL 1,登录 mysql -u用户名 -p 回车后输入密码 2, use mysql 3,输入下面命令,显示root为localhost本地登 ...
- 可能是全网最好的MySQL重要知识点 | 面试必备
可能是全网最好的MySQL重要知识点 | 面试必备 mp.weixin.qq.com 点击蓝色“程序猿DD”关注我 回复“资源”获取独家整理的学习资料! 标题有点标题党的意思,但希望你在看了文章之后 ...
- Orm 配置说明
一.在线技术文档: http://files.cnblogs.com/files/humble/d.pdf 二.使用的大致流程 1.首先下载代码生成器,可以一键生成项目Model层;(其中含有 ...
- rpc通讯
dotnet core各rpc组件的性能测试 一般rpc通讯组件都具有高性特性,因为大部分rpc都是基于二进制和连接复用的特点,相对于HTTP(2.0以下的版本)来说有着很大的性能优势,非常适合服务间 ...
- docker 学习操作记录 5-2
记录5-2 root@53d0a643a2c7:/# quit bash: quit: command not found root@53d0a643a2c7:/# exit exit -->@ ...
- @Import导入自定义选择器
@Import导入自定义选择器 之前一篇博文:Spring中的@Import注解已经详细介绍了@Import注解,不赘述. 需求描述 通过@import注解自定义组件选择器,将满足我们自定义的规则的b ...
- [转帖]java注解核心知识总结
java注解核心知识总结 2019-11-01 20:39:50 从事Java 阅读数 2 收藏 文章标签: java注解总结程序员 更多 分类专栏: java 注解 版权声明:本文为博主原创文 ...