BZOJ 3514 LCT+主席树
思路:


//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
const int N=;
int n,m,k,type,ch[N][],fa[N],minn[N],rev[N],q[N],top,pre[N];
int root[N],tree[N*],lson[N*],rson[N*],cnt,xx,yy,ans;
struct Road{int x,y,wei;}road[N];
bool isroot(int p){return ch[fa[p]][]!=p&&ch[fa[p]][]!=p;}
void push_up(int p){
minn[p]=p;
if(road[minn[ch[p][]]].wei<road[minn[p]].wei)minn[p]=minn[ch[p][]];
if(road[minn[ch[p][]]].wei<road[minn[p]].wei)minn[p]=minn[ch[p][]];
}
void push_down(int p){rev[ch[p][]]^=,rev[ch[p][]]^=,rev[p]=,swap(ch[p][],ch[p][]);}
void rotate(int p){
int q=fa[p],y=fa[q],x=(ch[q][]==p);
ch[q][x]=ch[p][!x],fa[ch[q][x]]=q;
ch[p][!x]=q,fa[p]=y;
if(!isroot(q)){
if(ch[y][]==q)ch[y][]=p;
if(ch[y][]==q)ch[y][]=p;
}fa[q]=p;push_up(q);
}
void splay(int x){
q[++top]=x;
for(int i=x;!isroot(i);i=fa[i])q[++top]=fa[i];
while(top){if(rev[q[top]])push_down(q[top]);top--;}
for(int y=fa[x];!isroot(x);rotate(x),y=fa[x])if(!isroot(y)){
if((ch[y][]==x)^(ch[fa[y]][]==y))rotate(x);
else rotate(y);
}push_up(x);
}
void access(int x){for(int t=;x;t=x,x=fa[x])splay(x),ch[x][]=t,push_up(x);}
void makeroot(int x){access(x),splay(x),rev[x]^=;}
bool connected(int x,int y){while(fa[x])x=fa[x];while(fa[y])y=fa[y];return x==y;}
void link(int x,int y){makeroot(x),fa[x]=y;}
void split(int x,int y){makeroot(x),access(y),splay(y);}
void cut(int x,int y){split(x,y),ch[y][]=fa[x]=;push_up(y);}
void insert(int l,int r,int &pos,int last,int wei){
pos=++cnt,tree[pos]=tree[last]+;
if(l==r)return;
int mid=(l+r)>>;
if(mid<wei)lson[pos]=lson[last],insert(mid+,r,rson[pos],rson[last],wei);
else rson[pos]=rson[last],insert(l,mid,lson[pos],lson[last],wei);
}
int query(int l,int r,int pos,int last,int L,int R){
if(l>=L&&r<=R)return tree[pos]-tree[last];
int mid=(l+r)>>;
if(mid<L)return query(mid+,r,rson[pos],rson[last],L,R);
else if(mid>=R)return query(l,mid,lson[pos],lson[last],L,R);
else return query(l,mid,lson[pos],lson[last],L,R)+query(mid+,r,rson[pos],rson[last],L,R);
}
int main(){
scanf("%d%d%d%d",&n,&m,&k,&type);
for(int i=;i<=n;i++)road[i].wei=0x3f3f3f3f;
for(int i=n+;i<=n+m;i++)scanf("%d%d",&road[i].x,&road[i].y),road[i].wei=i;
for(int i=n+;i<=n+m;i++){
if(connected(road[i].x,road[i].y)){
if(road[i].x==road[i].y){pre[i-n]=i-n;continue;}
split(road[i].x,road[i].y);
int t=minn[road[i].y];
pre[i-n]=road[t].wei-n;
cut(road[t].x,t),cut(road[t].y,t);
}
link(road[i].x,i),link(road[i].y,i);
}
for(int i=;i<=m;i++)insert(,m,root[i],root[i-],pre[i]);
while(k--){
scanf("%d%d",&xx,&yy);
if(type)xx^=ans,yy^=ans;
printf("%d\n",ans=n-query(,m,root[yy],root[xx-],,xx-));
}
}
BZOJ 3514 LCT+主席树的更多相关文章
- BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1312 Solved: 501 ...
- BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)
题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...
- BZOJ 3514 GERALD07加强版 (LCT+主席树)
题目大意:给定n个点m条边无向图,每次询问求当图中有编号为[L,R]的边时,整个图的联通块个数,强制在线 神题!(发现好久以前的题解没有写完诶) 我们要求图中联通块的个数,似乎不可搞啊. 联通块个数= ...
- [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 2177 Solved: 834 ...
- [bzoj3514][CodeChef GERALD07] Chef ans Graph Queries [LCT+主席树]
题面 bzoj上的强制在线版本 思路 首先可以确定,这类联通块相关的询问问题,都可以$LCT$+可持久化记录解决 用LCT维护生成树作为算法基础 具体而言,从前往后按照边的编号顺序扫一遍边 如果这条边 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- bzoj3514(LCT+主席树)
题目描述 N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解 对于一个截止时间来说,越晚的变越好. 所以我们可以维护一颗以边的序号为关键字的最大生成树,然后用主席树维 ...
- 【BZOJ3514】Codechef MARCH14 GERALD07加强版 LCT+主席树
题解: 还是比较简单的 首先我们的思路是 确定起点 然后之后贪心的选择边(也就是越靠前越希望选) 我们发现我们只需要将起点从后向前枚举 然后用lct维护连通性 因为强制在线,所以用主席树记录状态就可以 ...
- 洛谷P4180 [BJWC2010]次小生成树(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
随机推荐
- 微信小程序支付全问题解决
这几天在做小程序的支付,没有用官方的SDK,这里就纯用官方的文档搞一发. * 注作者使用的PHP,不过支付流程都是这样 开发前必读 主要流程 小程序前端发送求参请求 接受请求封装 "统一下单 ...
- Linux 复习二
第二章 一.Linux文件系统 1.基本概念 Linux文件系统为单根的树状结构,根为“/”,文件名大小写敏感,除了“/”都是可用字符,文件名以“.”开始的为隐藏文件. 2.常用文件夹 bin:可执行 ...
- c#string类型反序列化成字典类型
c# 实现string类型转化为字典类型:黄色底纹为需要引用的dll,可以在网站下载! 下载地址:http://download.csdn.net/download/xinping_168/47107 ...
- photon Unity RPC 调用流程
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/51425225 作者:car ...
- ACM数论常用知识完全解读
此版本纯属扯淡....... 一个一个来起.
- poj 2420 模拟退火法基础
/* 题意:给n个电脑,求一个点到这n个电脑的距离和最小. 模拟退火法:和poj1379的方法类似 因为坐标范围是0-10000 不妨把它看成是10000*10000的正方形来做 */ #includ ...
- [K/3Cloud]调用动态表单时,传递自定义参数
插件中在调用动态表单时,通过DynamicFormShowParameter的CustomParams,增加自定义的参数. private void ShowMaterialStock() { obj ...
- ACM 数学
欧几里得辗转相除法求最大公约数 int gcd(int a,int b) { ) return a; else return gcd(b,a%b); } 求组合数 int C(int n ,int m ...
- - > 动规讲解基础讲解八——正整数分组
将一堆正整数分为2组,要求2组的和相差最小.例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 整数个数n<=100,所有整数的和<=1 ...
- Ubuntu 16.04安装FTP客户端filezilla
1.安装: sudo apt-get install filezilla 参考: http://os.51cto.com/art/201103/247564.htm