看这个题目之前可以先看POJ2186复习一下强联通分量的分解

题意:给出N个开始时间和结束时间和持续时间三元组,持续时间可以在开始后或者结束前,问如何分配可以没有冲突。

—————–我是分割线———————————

先解释一下合取范式(离散数学已经学过):

如果合取范式中的每个字句的文字个数不超过两个就称为2-SAT问题

一般性称为n-SAT问题

举个栗子:(a∨b)∧¬a" role="presentation" style="position: relative;">(a∨b)∧¬a(a∨b)∧¬a 在a为false而b为true时整个范式的取值为真。

利用强连通分量的知识,就可以在布尔公式字句个数的线性时间内解决2-SAT问题。在离散数学中我们已经学过蕴含范式。对于a∨b" role="presentation" style="position: relative;">a∨ba∨b可以转换为(¬a⇒b)∧(¬b⇒a)" role="presentation" style="position: relative;">(¬a⇒b)∧(¬b⇒a)(¬a⇒b)∧(¬b⇒a)

下面就是建图过程了:

对于每一个布尔变量x,构造两个顶点x和¬x" role="presentation" style="position: relative;">¬x¬x;以⇒" role="presentation" style="position: relative;">⇒⇒为有向边建立有向图。

在有向图中,如果a能到达b的话,a为真则b也为真。

因此在同一个强连通分量中所含的所有文字代表的布尔值都相同。

特别注意的是,假设x和x̸" role="presentation" style="position: relative;">x̸x̸都在同一个强连通分量中,则显然,这个强连通分量始终不可能为真。

相反,如果不存在这样的布尔变量,对于每个布尔变量x,让

x所在的强连通分量的拓扑序在¬x" role="presentation" style="position: relative;">¬x¬x所在的强连通分量之后,(也就是比较二者的拓扑序)

就是使得该公式的值为真的一组合适的布尔变量的解。

——————-我是分割线————————-

对于每个三元组,只有在开始之后和结束之前两种选择,不妨设变量xi

xi为真<->在开始之后开始插入时间长度

有了这些理论支持,对于每个三元组,无非有四种组合情况:

开始-开始

开始和结束

结束-开始

结束-结束

(本题中样例中没有结束-开始)

如果开始-开始冲突,那么¬x1∨¬x2" role="presentation" style="position: relative;">¬x1∨¬x2¬x1∨¬x2的值为真。

所以合取范式为:(¬x1∨¬x2)∧(¬x1∨x2)∧(x1∨x2)" role="presentation" style="position: relative;">(¬x1∨¬x2)∧(¬x1∨x2)∧(x1∨x2)(¬x1∨¬x2)∧(¬x1∨x2)∧(x1∨x2)

当x1的值为真x2的值为假时,其值为真。

接下来就是进行强连通分量分解并判断是否有使得布尔公式的值为真的一组布尔变量赋值。

(这里利用带了前面的那个定理:如果x所在的强连通分量的拓扑序在¬x之后,则x为真" role="presentation" style="position: relative;">¬x之后,则x为真¬x之后,则x为真

#include <iostream>
#include <map>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <functional>
#include <set>
#include <cmath>
using namespace std;
#define IOS std::ios::sync_with_stdio (false);std::cin.tie(0)
#define pb push_back
#define PB pop_back
#define bk back()
#define fs first
#define se second
#define sq(x) (x)*(x)
#define eps (3e-7)
#define IINF (1<<29)
#define LINF (1ll<<59)
#define INF (1000000000)
#define FINF (1e3)
#define clr(x) memset((x),0,sizeof (x));
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<int,int> P; const int maxn=2005;
int n;
int a[maxn][3];
char r[300];
vector<int> G[maxn],rG[maxn],od;
bool vis[maxn];
int sccid[maxn];
int get(char a,char b){
return (a-'0')*10+b-'0';
}
bool inter(int a,int b,int c,int d){
return !(a>=d||b<=c);
}
void addedge(int a,int b){
G[a].pb(b);
rG[b].pb(a);
}
void dfs1(int v){
vis[v]=1;
for(int i=0;i<G[v].size();i++){
int u=G[v][i];
if(!vis[u]) dfs1(u);
}
od.pb(v);
}
void dfs2(int v,int k){
vis[v]=1;
sccid[v]=k;
for(int i=0;i<rG[v].size();i++){
int u=rG[v][i];
if(!vis[u]) dfs2(u,k);
}
}
int V;
void scc(){
clr(vis);od.clear();
for(int i=1;i<=V;i++){
if(!vis[i]) dfs1(i);
}
clr(vis);
int id=1;
for(int i=od.size()-1;i>=0;i--){
int v=od[i];
if(!vis[v]) dfs2(v,id++);
}
}
void build(){
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(inter(a[i][0],a[i][0]+a[i][2],a[j][0],a[j][0]+a[j][2])){
addedge(i,j+n);
addedge(j,i+n);
}
if(inter(a[i][0],a[i][0]+a[i][2],a[j][1]-a[j][2],a[j][1])){
addedge(i,j);
addedge(j+n,i+n);
}
if(inter(a[i][1]-a[i][2],a[i][1],a[j][0],a[j][0]+a[j][2])){
addedge(i+n,j+n);
addedge(j,i);
}
if(inter(a[i][1]-a[i][2],a[i][1],a[j][1]-a[j][2],a[j][1])){
addedge(i+n,j);
addedge(j+n,i);
}
}
}
}
bool ans[maxn];
int main(){
freopen("/home/slyfc/CppFiles/in","r",stdin);
//freopen("defense.in","r",stdin);
//freopen("defense.out","w",stdout);
cin>>n;
V=n*2;
for(int i=1;i<=n;i++){
scanf("%s",r);
a[i][0]=get(r[0],r[1])*60+get(r[3],r[4]);
scanf("%s",r);
a[i][1]=get(r[0],r[1])*60+get(r[3],r[4]);
scanf("%d",&a[i][2]);
}
build();
scc();
for(int i=1;i<=n;i++){
if(sccid[i]==sccid[i+n]){
puts("NO");
return 0;
}else{
if(sccid[i]>sccid[i+n]){
ans[i]=1;
}else{
ans[i]=0;
}
}
}
puts("YES");
for(int i=1;i<=n;i++){
if(ans[i]){
int s=a[i][0],t=a[i][0]+a[i][2];
printf("%02d:%02d %02d:%02d\n",s/60,s%60,t/60,t%60);
}else{
int s=a[i][1]-a[i][2],t=a[i][1];
printf("%02d:%02d %02d:%02d\n",s/60,s%60,t/60,t%60);
}
}
return 0;
}

POJ 3683 Priest John's Busiest Day的更多相关文章

  1. POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)

    POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...

  2. POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10010   Accep ...

  3. POJ 3683 Priest John's Busiest Day (2-SAT)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6900   Accept ...

  4. POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)

    Description John is the only priest in his town. September 1st is the John's busiest day in a year b ...

  5. poj - 3683 - Priest John's Busiest Day(2-SAT)

    题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...

  6. POJ 3683 Priest John's Busiest Day (2-SAT)

    题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...

  7. POJ 3683 Priest John's Busiest Day (2-SAT,常规)

    题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...

  8. POJ 3683 Priest John's Busiest Day

    2-SAT简单题,判断一下两个开区间是否相交 #include<cstdio> #include<cstring> #include<cmath> #include ...

  9. POJ 3683 Priest John's Busiest Day[2-SAT 构造解]

    题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...

  10. POJ 3683 Priest John's Busiest Day 【2-Sat】

    这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...

随机推荐

  1. java获取本机机器名

    java获取本机机器名 InetAddress.getLocalHost().getHostName().toString();

  2. poj 1695 Magazine Delivery 记忆化搜索

    dp[a][b][c],表示三个人从小到大依次在a,b.c位置时.距离结束最少的时间. 每次选一个人走到c+1位置搜索就好了. 坑点在于不能floyd.预计题目没说清楚.意思就是假设没送Li,那么Li ...

  3. Opengl ES 1.x NDK实例开发之七:旋转的纹理立方体

    开发框架介绍请參见:Opengl ES NDK实例开发之中的一个:搭建开发框架 本章在第六章(Opengl ES 1.x NDK实例开发之六:纹理贴图)的基础上绘制一个旋转的纹理立方体,原理和纹理贴图 ...

  4. Windows server 2003 + IIS6 搭建Asp.net MVC执行环境

    安装.Net Framework4.0. 下载地址: http://www.microsoft.com/zh-cn/download/details.aspx?id=17718  安装WindowsS ...

  5. SpringMVC+MyBatis+JMS+JTA(分布式事务)

    SpringMVC+MyBatis 相信已经是如今企业开发中经常使用技术了. 由于一些需求,我们须要集成JMS(我使用的是ActiveMQ).大家应该都知道.MQ也能够觉得是一个数据源.数据也是数据源 ...

  6. Koa2学习(七)使用cookie

    Koa2学习(七)使用cookie Koa2 的 ctx 上下文对象直接提供了cookie的操作方法set和get ctx.cookies.set(name, value, [options])在上下 ...

  7. (1)iOS9完美越狱

    方式一:同步推越狱,其实用的也是方式二 参考:iOS9.3.5不完美越狱(点击跳转) 方式二:使用impactor越狱. 下载地址:http://www.pc6.com/mac/505285.html

  8. 以太坊 EVM内交易执行分析(一)

    以太坊上交易最终都会由EVM进行解析存入数据库,今天就来探讨一下,一笔交易是如何别EVM执行的.我们可以把交易分为三种.(注意,和交易相关的模块很多,交易的生命周期存在于整个以太坊中,我们这次只是分析 ...

  9. JSP 与 ACTION 之间的跳转

    <script language="javascript">function delconfirm(url){ if(confirm("你确定要删除本条数据吗 ...

  10. 【Codevs1346】HelloWorld编译器

    http://codevs.cn/problem/1346/ 可怜我战绩 // <1346.cpp> - 10/30/16 17:12:09 // This file is made by ...