---恢复内容开始---

一、多进程

  1、multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。

import time
from multiprocessing import Process
def func(name):
print('%s 函数开始,time:%s' %(name,time.ctime()))
# time.sleep(2)
print('%s 函数结束,time:%s' %(name,time.ctime())) if __name__ == "__main__":
p1=Process(target=func,args=('one',))
p2=Process(target=func,args=('two',))
p3=Process(target=func,args=('three',))
p4=Process(target=func,args=('four',))
p5 = Process(target=func, args=('five',))
p1.start()
p2.start()
p3.start()
p4.start()
p5.start()
print(u'主进程%s'%time.ctime())
结果:
one 函数开始,time:Sat Sep 08 17:15:40 2018
two 函数开始,time:Sat Sep 08 17:15:40 2018
主进程Sat Sep 08 17:15:40 2018
three 函数开始,time:Sat Sep 08 17:15:40 2018
four 函数开始,time:Sat Sep 08 17:15:40 2018
five 函数开始,time:Sat Sep 08 17:15:40 2018
one 函数结束,time:Sat Sep 08 17:15:42 2018
two 函数结束,time:Sat Sep 08 17:15:42 2018
three 函数结束,time:Sat Sep 08 17:15:42 2018
four 函数结束,time:Sat Sep 08 17:15:42 2018
five 函数结束,time:Sat Sep 08 17:15:42 2018  

  *所有函数并发执行(注意:在windows中Process()必须放到# if __name__ == '__main__':下#方法二(和上面效果一样)

import time
from multiprocessing import Process class Piao(Process):
def __init__(self,name):
Process.__init__(self)
self.name=name
def run(self):
print('%s 函数开始,time:%s' %(self.name,time.ctime()))
time.sleep(2)
print('%s 函数结束,time:%s' %(self.name,time.ctime())) if __name__ == '__main__':
p1=Piao('one')
p2=Piao('two')
p3=Piao('three')
p4=Piao('four')
    #p.daemon = True(进程守护和线程守护一样)
p1.start()
p2.start()
    p3.start()
p4.start()
print('主线程%s'%time.ctime())

   2、join()方法是用来让主进程等待所有子进程结束并不影响子进程之间的并发:

import time
from multiprocessing import Process
class Piao(Process):
def __init__(self,name):
Process.__init__(self)
self.name=name
def run(self):
print('%s 函数开始,time:%s' %(self.name,time.ctime()))
time.sleep(2)
print('%s 函数结束,time:%s' %(self.name,time.ctime()))
if __name__ == '__main__':
tasks = []
tasks.append(Piao('one'))
tasks.append(Piao('two'))
tasks.append(Piao('three'))
tasks.append(Piao('four'))
for p in tasks:
p.start()
for p in tasks:
p.join()
print('主线程%s'%time.ctime())
结果:
one 函数开始,time:Sat Sep 08 17:37:43 2018
two 函数开始,time:Sat Sep 08 17:37:43 2018
three 函数开始,time:Sat Sep 08 17:37:43 2018
four 函数开始,time:Sat Sep 08 17:37:43 2018
one 函数结束,time:Sat Sep 08 17:37:45 2018
two 函数结束,time:Sat Sep 08 17:37:45 2018
three 函数结束,time:Sat Sep 08 17:37:45 2018
four 函数结束,time:Sat Sep 08 17:37:45 2018
主线程Sat Sep 08 17:37:45 2018 #主进程等所有子进程结束,子进程之间并不影响并发

  

  5、进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就            是错乱,如何控制,就是加锁处理

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
#由并发变成了串行,牺牲了运行效率,但避免了竞争
from multiprocessing import Process,Lock
import os,time
def work(lock):
lock.acquire()
print('%s 函数开始,time:%s' %(os.getpid(),time.ctime()))
time.sleep(2)
print('%s 函数结束,time:%s' %(os.getpid(),time.ctime()))
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(3):
p=Process(target=work,args=(lock,))
p.start()
24464 函数开始,time:Sat Sep 08 18:02:17 2018
24464 函数结束,time:Sat Sep 08 18:02:19 2018
21072 函数开始,time:Sat Sep 08 18:02:19 2018
21072 函数结束,time:Sat Sep 08 18:02:21 2018
13536 函数开始,time:Sat Sep 08 18:02:21 2018
13536 函数结束,time:Sat Sep 08 18:02:23 2018

之前打印是同一时间,是多个进程共享同一打印终端,但是加了锁后就不能共享了,但是依旧是并发,是锁限制了共享终端,在读写文件是需要枷锁,不然容易造成错乱

6、队列

   Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,常用来在生产者和消费者线程之间的信息传递。queue.put方法用以插入数据到队列中,queue.get方法用来冲数据队列去除数据(先进先出)

产者消费者模式

生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

基于队列实现生产者消费者模型

 

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res in None: break
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(20):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.put(None) if __name__ == '__main__':
q=Queue()
#生产者
p1=Process(target=producer,args=(q,))
#消费者
c1=Process(target=consumer,args=(q,))
#开始
p1.start()
c1.start()
print('主进程')

7、进程池

Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,就重用进程池中的进程。

from multiprocessing import Pool
import os,time
def work(n):
print('%s run,time:%s' %(os.getpid(),time.ctime()))
time.sleep(3)
return n**2 if __name__ == '__main__':
p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_l=[]
for i in range(10):
res=p.apply_async(work,args=(i,)) #同步运行,阻塞、直到本次任务执行完毕拿到res
res_l.append(res) #异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果,否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
p.close()
p.join()
for res in res_l:
print res.get(), #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get,‘,’无须换行打印
结果:
6684 run,time:Mon Sep 10 11:41:22 2018
732 run,time:Mon Sep 10 11:41:22 2018
10748 run,time:Mon Sep 10 11:41:22 2018
6684 run,time:Mon Sep 10 11:41:25 2018
732 run,time:Mon Sep 10 11:41:25 2018
10748 run,time:Mon Sep 10 11:41:25 2018
6684 run,time:Mon Sep 10 11:41:28 2018
732 run,time:Mon Sep 10 11:41:28 2018
10748 run,time:Mon Sep 10 11:41:28 2018
6684 run,time:Mon Sep 10 11:41:31 2018
0 1 4 9 16 25 36 49 64 81
 #进程池最大容量设置三,因此每次只有三个异步进程执行,等待执行结束再安排

---恢复内容结束---

python多线程和多进程(二)的更多相关文章

  1. Python 多线程、多进程 (二)之 多线程、同步、通信

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  2. Python 多线程、多进程 (三)之 线程进程对比、多进程

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.多线程与多进 ...

  3. Python 多线程、多进程 (一)之 源码执行流程、GIL

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  4. Python多线程和多进程谁更快?

    python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很 ...

  5. python多线程与多进程--存活主机ping扫描以及爬取股票价格

    python多线程与多进程 多线程: 案例:扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活) 普通版本: #扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活)im ...

  6. python多线程与多进程及其区别

    个人一直觉得对学习任何知识而言,概念是相当重要的.掌握了概念和原理,细节可以留给实践去推敲.掌握的关键在于理解,通过具体的实例和实际操作来感性的体会概念和原理可以起到很好的效果.本文通过一些具体的例子 ...

  7. 基于Windows平台的Python多线程及多进程学习小结

    python多线程及多进程对于不同平台有不同的工具(platform-specific tools),如os.fork仅在Unix上可用,而windows不可用,该文仅针对windows平台可用的工具 ...

  8. python基础之多线程与多进程(二)

    上课笔记整理: 守护线程的作用,起到监听的作用 一个函数连接数据库 一个做守护线程,监听日志 两个线程同时取一个数据 线程---->线程安全---->线程同时进行操作数据. IO操作--- ...

  9. python多线程,多进程

    线程是公用内存,进程内存相互独立 python多线程只能是一个cpu,java可以将多个线程平均分配到其他cpu上 以核为单位,所以GIL(全局锁,保证线程安全,数据被安全读取)最小只能控制一个核,很 ...

  10. python 多线程和多进程

    多线程与多进程 知识预览 一 进程与线程的概念 二 threading模块 三 multiprocessing模块 四 协程 五 IO模型 回到顶部 一 进程与线程的概念 1.1 进程 考虑一个场景: ...

随机推荐

  1. mybatis基础学习5---懒加载和缓存

    1:懒加载 1)在主配置文件设置(要放在配置文件最前面) 1 <!-- 延迟加载配置,两个都必须同时有 --> <settings> 3 <!-- lazyLoading ...

  2. bzoj 3824: [Usaco2014 Dec]Guard Mark【状压dp】

    设f[s]为已经从上到下叠了状态为s的牛的最大稳定度,转移的话枚举没有在集合里并且强壮度>=当前集合牛重量和的用min(f[s],当前放进去的牛还能承受多种)来更新,高度的话直接看是否有合法集合 ...

  3. P4949 最短距离(树链剖分+树状数组+基环树)

    传送门 一个中午啊-- 本来打算用仙人掌搞的,后来发现直接基环树就可以了,把多出来的那条边单独记录为\((dx,dy,dw)\),剩下的树剖 然后最短路径要么直接树上跑,要么经过多出来的边,分别讨论就 ...

  4. 开源基于asio的网络通信框架asio2,支持TCP,UDP,HTTP,RPC,SSL,跨平台,支持可靠UDP,支持TCP自动拆包,TCP数据报模式等

    开源基于asio的网络通信框架asio2,支持TCP,UDP,HTTP,RPC,SSL,跨平台,支持可靠UDP,支持TCP自动拆包,TCP数据报模式等 C++开发网络通信程序时用asio是个不错的选择 ...

  5. [poj3744] Scout YYF I【概率dp 数学期望】

    传送门:http://poj.org/problem?id=3744 令f(i)表示到i,安全的概率.则f(i) = f(i - 1) * p + f(i - 2) * (1 - p),若i位置有地雷 ...

  6. Frequency of String CodeForces - 963D

    http://codeforces.com/contest/963/problem/D 题解:https://www.cnblogs.com/Blue233333/p/8881614.html 记M为 ...

  7. 题解报告:hdu1205吃糖果(插空法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1205 Problem Description HOHO,终于从Speakless手上赢走了所有的糖果, ...

  8. CentOS 6.5使用:[3]使用xftp传递文件

    先检查CentOS系统是否安装了FTP服务 [root@centos ~]# rpm -qa | grep vsftpd 如果有内容输出,那么恭喜你,你的系统已经安装了ftp服务   如果没有那么按照 ...

  9. 最实用解决tomcat startup.bat 一闪而过

    1.直接到tomcat 的解压路径中找到log日志,eg:D:\tomcat\apache-tomcat-7.0.73\logs 查看 catalina 这个日志文件,可以清除的定位错误原因:一般可能 ...

  10. spark源码学习-withScope

     withScope是最近的发现版中新增加的一个模块,它是用来做DAG可视化的(DAG visualization on SparkUI) 以前的sparkUI中只有stage的执行情况,也就是说我们 ...