K大数查询(bzoj 3110)
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
/*
动态第K大,整体二分的经典题目。
思想和静态的是差不多的,即二分出答案之后用树状数组判断,但是这个题目树状数组用了两个,就不是很懂了。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define lon long long
#define N 50010
using namespace std;
lon n,m,c1[N],c2[N],ans[N],has[N];
struct node{
lon l,r,c,tp,id;
};node a[N],q[N];
void add(lon *c,lon i,lon b){
for(;i<=n;i+=i&(-i))
c[i]+=b;
}
lon sum(lon *c,lon i){
lon r=;
for(;i;i-=i&(-i))
r+=c[i];
return r;
}
void modify(lon l,lon r,lon c){
add(c1,l,c);add(c1,r+,-c);
add(c2,l,-c*(l-));add(c2,r+,c*r);
}
lon pre(lon i){
if(!i)return ;
return sum(c1,i)*i+sum(c2,i);
}
lon query(lon l,lon r){
return pre(r)-pre(l-);
}
void solve(lon head,lon tail,lon l,lon r){
if(head>tail) return;
if(l==r){
for(lon i=head;i<=tail;i++)
if(a[i].tp==) ans[a[i].id]=l;
return;
}
lon mid=l+r>>;
lon l1=head,l2=tail;
for(lon i=head;i<=tail;i++){
if(a[i].tp==){
if(a[i].c<=mid) q[l1++]=a[i];
else q[l2--]=a[i],modify(a[i].l,a[i].r,);
}
else {
lon cnt=query(a[i].l,a[i].r);
if(cnt<a[i].c){
a[i].c-=cnt;
q[l1++]=a[i];
}
else q[l2--]=a[i];
}
}
reverse(q+l2+,q+tail+);
for(lon i=head;i<=tail;i++){
a[i]=q[i];
if(a[i].tp==&&a[i].c>mid)
modify(a[i].l,a[i].r,-);
}
solve(head,l1-,l,mid);
solve(l1,tail,mid+,r);
}
int main(){
scanf("%lld%lld",&n,&m);
for(lon i=;i<=m;i++){
scanf("%lld%lld%lld%lld",&a[i].tp,&a[i].l,&a[i].r,&a[i].c);
a[i].id=i;
if(a[i].tp==) has[i]=;
}
solve(,m,,n);
for(lon i=;i<=m;i++)
if(has[i])printf("%lld\n",ans[i]);
return ;
}
K大数查询(bzoj 3110)的更多相关文章
- K大数查询 BZOJ 3110
K大数查询 [问题描述] 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- 【ZJOI2013】k大数查询 BZOJ 3110
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- BZOJ 3110 K大数查询 | 整体二分
BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...
- [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)
[BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )
BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...
- BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 418 Solved: 235 [ Submit][ ...
- BZOJ 3110 [Zjoi2013]K大数查询(整体二分)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 11654 Solved: 3505[Submit][St ...
随机推荐
- 原创 :xftp SFTP子系统申请已拒绝 请确保SSH链接的SFTP子系统设置有效
在出现这个错误时候 如果你的远程连接没有问题 那么就执行下面的命令 service sshd restart 搞定!
- 简单的 创建AJax的方法
// 简单的ajax对象 var myAjax = { // XMLHttpRequest IE7+, Firefox, Chrome, Opera, Safari : ActiveXObject I ...
- UEditor中多图上传的bug
多图上传 预览:支持浏览器版本 IE8以上 在线管理:由于存在bug,显示不了 ueditor-1.1.1.jar解压后找到FileManager 1.修改com.baidu.ueditor.hun ...
- shell脚本,编写1个弹出式菜单的shell程序并实现其简单的菜单功能。
[root@localhost wyb]# cat zonghe.sh #!/bin/bash #zonghe usage(){ case $choice in ) read -p "ple ...
- C#获得DataTable的key值
//获得dataTable的key值 List<string> keyList = new List<string>(); ; i < dt.Columns.Count; ...
- js的命令模式
命令模式: 什么叫命令模式: 将一个请求封装成一个对象,从而让你使用不同的请求把客户端参数化,对请求排队或者记录请求日志,可以提供命令的撤销和恢复功能. 命令模式主要有四个部分: 命令对象(comma ...
- TB平台搭建之二
主要想记录关于debug问题: 一般我会1.定位问题所在位置比如使能信号错误.地址读写错误.数据流pipeline错误.... 2.首先看问题的源头(对应信号)是否还正确,比如出现XX要查看她的第一级 ...
- mem之读操作调式总结(跟入栈出栈有关)
现象: 1.当case比较复杂的时候(含有for循环对mem进行读/写) 发现for循环时总是有汇编指令不执行跳过去了,(其实是汇编不熟和指令太多无法理智分析指令了). 事实是指令是对的,但执行错了( ...
- Web框架之Django_04 模板层了解(过滤器、标签、自定义过滤器、标签、inclusion_tag、模板的继承与导入)
摘要: 模版层(模板语法) 模板语法 过滤器 标签 自定义过滤器.标签 inclusion_tag 模板的继承 模板的导入 一.模板语法: 常用语法:{{ }} 变量相关{% %} ...
- Python面向对象(约束,异常处理,md5加密)(五)
1. 类的约束 1. 写一个父类. 父类中的某个方法要抛出一个异常 NotImplementedError class Base: def login(self): raise NotImplemen ...