题目链接

  很巧妙的想法。一开始将1~k-1加入堆中,然后每次从堆里取出一个最小的,判断是不是答案,如果不是,那么就枚举新数的末一位加上。

  代码如下

  

#include<cstdio>
#include<cstdlib>
#include<cctype>
#include<cstring>
#include<algorithm> inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long heap[];
long long size;
inline void push(long long x){
heap[++size]=x;
long long i=size,k;
while(i>){
k=i>>;
if(heap[k]<=heap[i]) return;
std::swap(heap[k],heap[i]);
i=k;
}
} inline long long pop(){
long long ans=heap[];
heap[]=heap[size--];
long long i=,k;
while(i<<<=size){
k=i<<;
if(k<size&&heap[k]>heap[k|]) k|=;
if(heap[i]<=heap[k]) return ans;
std::swap(heap[i],heap[k]);
i=k;
}
return ans;
} int main(){
long long k=read(),m=read();
for(long long i=;i<k;++i) push(i);
while(size){
long long s=pop();
if(s%m==&&s){
printf("%lld",s);
return ;
}
for(register long long i=;i<k;++i) push(s*+i);
}
return ;
}

【Luogu】P1602Sramoc问题(堆)的更多相关文章

  1. [luogu]P1168 中位数[堆]

    [luogu]P1168 中位数 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1 ...

  2. luogu 3466 对顶堆

    显然答案是将一段区间全部转化成了其中位数这样的话,需要维护一个数据结构支持查询当前所有数中位数对顶堆 用两个堆将 < 中位数的数放入大根堆将 > 中位数的数放入小根堆这样就会存在删除操作 ...

  3. 【Luogu P4779】dijkstra算法的堆优化

    Luogu P4779 利用堆/优先队列快速取得权值最小的点. 在稠密图中的表现比SPFA要优秀. #include<iostream> #include<cstdio> #i ...

  4. CJOJ 2484 函数最小值 / Luogu 2085 函数最小值(STL优先队列,堆)

    CJOJ 2484 函数最小值 / Luogu 2085 函数最小值(STL优先队列,堆) Description 有n个函数,分别为F1,F2,...,Fn.定义 \(Fi(x)=Aix^2+Bix ...

  5. 【luogu P3378 堆】 模板

    题目链接:https://www.luogu.org/problemnew/show/P3378 是堆的模板...我懒,STL da fa is good #include <iostream& ...

  6. Luogu [P1334] 瑞瑞的木板(手写堆)

    其实这个题完全不需要用手写堆,只需要一遍遍sort就行了…… 但是! 为了练习手写堆,还是用手写堆做了. 在做本题之前,如果你没有什么思路的话,建议先做Luogu的合并果子. 好,假设你已经做过了合并 ...

  7. 【Luogu P1168】【Luogu P1801&UVA 501】中位数&黑匣子(Black Box)——对顶堆相关

    Luogu P1168 Luogu P1801 UVA 501(洛谷Remote Judge) 前置知识:堆.优先队列STL的使用 对顶堆 是一种在线维护第\(k\)小的算法. 其实就是开两个堆,一个 ...

  8. luogu P1552 [APIO2012]派遣 题解--可并堆/贪心

    题目链接: https://www.luogu.org/problemnew/show/P1552 分析: 一开始愣是没看懂题,后面发现就是你要找一个树上点集使得各点权值之和小于\(M\),并且找一个 ...

  9. Luogu P3378 【模板】堆

    ((^ 0.0 ^)    )~ 堆是一个完全二叉树,对于小根堆,所有父节点<=子节点,下标就和线段树是一样的 在STL里就是优先队列 只有堆顶元素可以操作(询问或弹出). 加入新元素时x,he ...

随机推荐

  1. Yslow使用方法

    Yslow是雅虎开发的基于网页性能分析浏览器插件,从年初我使用了YSlow后,改变了博客模板大量冗余代码,不仅提升了网页的打开速度,这款插件还帮助我分析了不少其他网站的代码,之前我还特意写了提高网站速 ...

  2. Android学习总结(二)——Service基本概念和生命周期

    好了,前面我们已经学习了Activity的知识,相信大家也有一定的理解,但是还是不能放松,Android四大组件,我们才学习了一个而已,接下我们继续学习Service.计划总结如下内容: 一.Serv ...

  3. 00_HTTP协议介绍

    1. 什么是HTTP协议 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到 ...

  4. 融云参加RTC实时互联网大会 现场集成IM SDK

    9月21至22日,由全球实时云服务商声网Agora.io主办的RTC2017实时互联网大会在北京万豪酒店成功举办.作为亚洲最权威的RTC实时通信行业技术盛会,会议吸引了来自全球上千名开发者参加,Goo ...

  5. UVA - 1279 Asteroid Rangers (动点的最小生成树)

    题意,有n个匀速动点,求最小生成树的改变次数. 一句话总结:动态问题的一般做法是先求出一个静态的解,然后求出解发生改变的事件,事件按照时间排序,依次处理. 先求出最开始的最小生成树(MST),当MST ...

  6. WPF中窗体调用窗体

    在WPF中有时候我们需要在一个窗体中去调用另外的一个窗体,下面给出调用方法. 下面实现在MainWindow中通过点击一个按钮调用另外的一个窗口. 首先创建你要调用的另外一个窗口:点击最上面的项目  ...

  7. Asp.Net Core 入门(八)—— Taghelper

    Taghelper是一个服务端的组件,可以在Razor文件中创建和渲染HTML元素,类似于我们在Asp.Net MVC中使用的Html Taghelper.Asp.Net Core MVC内置的Tag ...

  8. 46.Maximum Product Subarray(最大乘积子数组)

    Level:   Medium 题目描述: Given an integer array nums, find the contiguous subarray within an array (con ...

  9. Linux之centos7 VMware安装教程

    Linux系统安装 下面是centOS7的安装过程 VMware 系统搭建 1 新建虚拟机 2 选择自定义 3 选择稍后安装操作系统 4 选择操作系统的版本Linux centos64位 5 选择处理 ...

  10. Vue之父子组件的通信

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...