开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可)

prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图

#include<iostream>              //prim  n^2
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int a[102][102];int dis[102];int mark[102];
int main()
{
int n;
while(cin>>n&&n)
{
int m=n*(n-1)/2;
int x,y;
memset(a,0x3f,sizeof(a));
memset(dis,0x3f,sizeof(dis));
memset(mark,0,sizeof(mark));
while(m--)
{
scanf("%d%d",&x,&y);
int temp;
scanf("%d",&temp);
if(a[x][y]>temp)
a[x][y]=temp;
a[y][x]=a[x][y];
}
int ans=0;
int cur=1;
mark[cur]=1;
for(int i=1;i<n;i++) //加入n-1条边
{
int minedge=inf; int vertex; //每次找最小的边和新加入的点
for(int j=1;j<=n;j++)
if(mark[j]==0)
{
if(dis[j]>a[cur][j]) //更新
{
dis[j]=a[cur][j];
}
if(minedge>dis[j]) //得最小边
{
minedge=dis[j];
vertex=j;
}
}
ans+=minedge;
cur=vertex; //新加入的点cur
mark[cur]=1; //已经加入
}
printf("%d\n",ans);
}
return 0;
}
#include<iostream>        //kruskal ,+并查集维护,m*logm
#include<vector>
#include<algorithm>
#include<cstdio>
using namespace std;
const int inf=0x3f3f3f3f;
int fa[102];
int father(int x){return (x==fa[x]?x:father(fa[x]));}
struct edge
{
int x,y,w;
};
bool my(const edge &a,const edge &b) //先按权重排序
{
return a.w<b.w;
}
int main()
{
int n;
while(cin>>n&&n)
{
int m=n*(n-1)/2;
vector<edge>v(m);
for(int i=1;i<=n;i++) //初始化并查集
fa[i]=i;
for(int i=0;i<m;i++)
{
scanf("%d%d",&v[i].x,&v[i].y);
int temp;
scanf("%d",&temp);
v[i].w=temp;
}
int ans=0;
sort(v.begin(),v.end(),my); //排序
for(int i=0,num=0;num<n-1;i++) //取
{
int xx=father(v[i].x);int yy=father(v[i].y);
if(xx!=yy) //不是同一个连通分量,合并之
{
ans+=v[i].w;
fa[xx]=yy;
num++; //发现一个有效边,共n-1条。
}
}
printf("%d\n",ans);
}
return 0;
}
#include<iostream>                 //求无向图连通分支数,直接并查集。
#include<vector>
#include<algorithm>
#include<cstdio>
#include<set>
using namespace std;
int fa[1002];
int father(int x){return (x==fa[x]?x:father(fa[x]));}
struct edge
{
int x,y;
};
int main()
{
int n,m;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
vector<edge>v(m);
for(int i=1;i<=n;i++)
{
fa[i]=i; //初始化
}
for(int i=0;i<m;i++)
{
scanf("%d%d",&v[i].x,&v[i].y);
} for(int i=0;i<m;i++)
{
int xx=father(v[i].x); //x--y有边。
int yy=father(v[i].y);
fa[xx]=yy;
}
int count=0;
set<int>se;
for(int i=1;i<=n;i++) //只需看有几个father(i)(等价类),一个连通分量只对应一个。
{
se.insert(father(i));
}
count=se.size()-1;
printf("%d\n",count);
}
return 0;
}

Minimum Spanning Tree.prim/kruskal(并查集)的更多相关文章

  1. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  2. Connect the Campus (Uva 10397 Prim || Kruskal + 并查集)

    题意:给出n个点的坐标,要把n个点连通,使得总距离最小,可是有m对点已经连接,输入m,和m组a和b,表示a和b两点已经连接. 思路:两种做法.(1)用prim算法时,输入a,b.令mp[a][b]=0 ...

  3. 最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法

    本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考 ...

  4. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  5. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  6. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  7. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

随机推荐

  1. 通过HTML 取得页面、屏幕、浏览器的高度宽度

    一.介绍 1. 容器 一个页面的展示,从外到内的容器为:屏幕.浏览器以及页面本身. HTML元素展现在页面内,页面展现在浏览器内,而浏览器展现在屏幕内. 通过Js的一些对象可以获取这些容器的高度.宽度 ...

  2. vue同胞组件通讯解决方案(以下为一种另外可用vuex解决)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. git项目常用命令

    git rm --cached 文件名    //移除不上传 git add .    //添加所有文件 .gitignore   //git忽略不想上传或者不需要上传的文件 REAMDE.md  文 ...

  4. 打开centos直接进入文本模式命令行

    2.打开/etc/inittab 文件 #vim /etc/inittab3.在默认的 run level 设置中,可以看到第一行书写如:id:5:initdefault:(默认的 run level ...

  5. 原创 齐天大圣老司机亲传rescue恢复磁盘分区

    老葵花哥哥课堂开课了本文档秉承爱看不看的原则 一不要钱 二服务大众的高尚情操咱们今天讲一讲rescue恢复磁盘分区 首先咱们搭建环境搞起来 (parted) mkpart #创建分区 Partitio ...

  6. How To Build Kubernetes Platform (构建Kubernetes平台方案参考)

    Architecture Architecture Diagram Non-Prod Environment Prod Environment Cluster Networking Container ...

  7. HashMap详解 基于jdk1.7

    转载自:http://zhangshixi.iteye.com/blog/672697 1.    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操 ...

  8. uva10735 Euler Circuit

    题外话:很多混合图问题可以转化为有向图问题(将无向边拆为两条有向边) 本题不行,因为只能经过一次 这种问题能想到网络流.. 复习欧拉回路:入度==出度 和uva1380有点相似,要先给无向边定向.原图 ...

  9. JavaSE-30 BigDecimal类的使用

    问题 Java(其他编程语言也存在类似问题)中浮点数直接进行算术运算会导致精度丢失. 示例代码: System.out.println("1.0 - 0.9 =" + (1.0 - ...

  10. 在已有的mysql表中添加自增字段

    现有数据表xiami,建表的时候忘记添加自增字段,现需要添加自增字段 第一步:添加字段 alter table xiami add id int; 第二步:修改字段 alter tabel xiami ...