bzoj 1488: [HNOI2009]图的同构【polya定理+dfs】
把连边和不连边看成黑白染色,然后就变成了 https://www.cnblogs.com/lokiii/p/10055629.html
这篇讲得好!https://blog.csdn.net/wzq_qwq/article/details/48035455
#include<iostream>
#include<cstdio>
using namespace std;
const int N=65,mod=997;
int n,m=2,fac[N],ans,a[N];
int gcd(int a,int b)
{
return !b?a:gcd(b,a%b);
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
void dfs(int w,int s,int y)
{
if(!y)
{
int c=0,tot=1;
int nw=1;
for(int i=1;i<w;i++)
c+=a[i]/2;
for(int i=1;i<w;i++)
for(int j=i+1;j<w;j++)
c+=gcd(a[i],a[j]);
for(int i=1;i<w;i++)
nw=nw*a[i]%mod;
for(int i=2;i<w;i++)
{
if(a[i]!=a[i-1])
nw=nw*fac[tot]%mod,tot=0;
tot++;
}
nw=fac[n]*ksm(nw*fac[tot]%mod,mod-2)%mod;
ans=(ans+nw*ksm(m,c))%mod;
}
if(y<s)
return;
for(int i=s;i<=y;i++)
{
a[w]=i;
dfs(w+1,i,y-i);
}
}
int main()
{
scanf("%d",&n);
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=fac[i-1]*i%mod;
dfs(1,1,n);
printf("%d\n",ans*ksm(fac[n],mod-2)%mod);
return 0;
}
bzoj 1488: [HNOI2009]图的同构【polya定理+dfs】的更多相关文章
- BZOJ 1488: [HNOI2009]图的同构 [Polya]
完全图中选出不同构的简单图有多少个 上题简化版,只有两种颜色....直接copy就行了 太诡异了,刚才电脑上多了一个不动的鼠标指针,然后打开显卡管理界面就没了 #include<iostream ...
- [bzoj1488][HNOI2009]图的同构——Polya定理
题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b ...
- bzoj 1488: [HNOI2009]图的同构
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
- BZOJ 1488: [HNOI2009]图的同构 polay
题意:两个图AB同构:把A的顶点重新编号后与B一模一样.求n个顶点的图一共有多少个?(同构的算一种) 思路:边有n*(n-1)/2,这些边可以有可以没有,所以等同于边的颜色有两种.然后将n划分成循环节 ...
- [BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)
由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右.对于每种搜索方案可以轻易求出它所代表的置换具体有多少个. 但我们搜索的是点置换组 ...
- bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec M ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- BZOJ 1815: [Shoi2006]color 有色图(Polya定理)
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...
- [BZOJ1478&1488&1815][SGU282]Isomorphism:Polya定理
分析 三倍经验题,本文以[BZOJ1478][SGU282]Isomorphism为例展开叙述,主体思路与另外两题大(wan)致(quan)相(yi)同(zhi). 这可能是博主目前写过最长也是最认真 ...
随机推荐
- DevExpress2011控件教程)编辑控件(comboBox,AspxCheckBox) 范例1
DevExpress2011控件教程)编辑控件(comboBox,AspxCheckBox) 范例1 AspxCheckBox 是一个检查编辑控件去展示特殊条件是否关闭或者打开.它一般会展示Yes/N ...
- 关于Java中强制类型转换的问题
为了更好的理解我们先看下面的例子: package com.yonyou.test; import java.util.ArrayList; import java.util.Iterator; im ...
- IOS 获取设备本地音视频
1.检索音视频 PHFetchOptions *allPhotosOptions; @property (nonatomic, strong) PHFetchResult *assetsFetchRe ...
- RC4算法的Python实现详注
刚对RC4算法进行了学习,网上发现https://ju.outofmemory.cn/entry/46753 中作者展示了RC4的python实现,但代码缺乏注释,较为晦涩,因此本文对部分代码进行了注 ...
- mysql limit分页优化方法分享
同样是取10条数据 select * from yanxue8_visit limit 10000,10 和 select * from yanxue8_visit limit 0,10 就不是 ...
- jvm 命令
jps jps主要用来输出JVM中运行的进程状态信息.语法格式如下: jps [options] [hostid] 如果不指定hostid就默认为当前主机或服务器. -q 不输出类名.Jar名和传入 ...
- JDK提供的几种常用的锁
可重入互斥锁: Lock lock = new ReentrantLock() lock.lock(); ... lock.unlock(); 信号量: Semaphore semaphore = n ...
- Space for commit to queue couldn't be acquired
18/07/27 16:53:53 ERROR source.ExecSource: Failed while running command: tail -F /home/MyBgJavaLan/p ...
- 探索C++的底层机制
探索C++的底层机制 在看这篇文章之前,请你先要明白一点:那就是c++为我们所提供的各种存取控制仅仅是在编译阶段给我们的限制,也就是说是编译器确保了你在完成任务之前的正确行为,如果你的行为不正确,那么 ...
- 文件批量转换成UTf-8
yum install -y enca 在文件夹根目录下面创建文件:iconv_shell.sh 里面填写下面的内容: #!/bin/bash for file in `find ./ -name ' ...