bzoj 2006: [NOI2010]超级钢琴【st表+堆】
设计一个五元组(i,l,r,p,v),表示在以i为左端点,右端点落在(l,r)中的情况下,取最大值v时右端点落在p。把这个五元组塞到优先队列里,以v排序,每次取出一个,然后把这个取过的五元组分成两个(i,l,p-1,p',v')(i,p+1,r,p'',v'')塞回去。
关于如何确定v和p,先求前缀和s,然后选择st表,注意这里的st表存的是位置,s[i][0]=i,然后取max的操作改成mx:return s[a]>s[b]?a:b;就可以了,不用存两个(我因为存了两个WAWAWA…然而至今不知道为啥
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N=550005;
int n,m,l,r,a[N],st[N][20],b[N],s[N];
long long ans;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
struct qwe
{
int i,l,r,v,p;
bool operator < (const qwe &a) const
{
return v<a.v;
}
};
priority_queue<qwe>q;
int mx(int a,int b)
{
return s[a]>s[b]?a:b;
}
void add(int i,int l,int r)
{
qwe now;
now.i=i,now.l=l,now.r=min(r,n);
if(now.l>now.r)
return;
int k=b[now.r-now.l+1];
now.p=mx(st[now.l][k],st[now.r-(1<<k)+1][k]);
now.v=s[now.p]-s[now.i-1];//cout<<now.i<<" "<<now.l<<" "<<now.r<<" "<<now.p<<" "<<now.v<<endl;
q.push(now);
}
int main()
{
n=read(),m=read(),l=read(),r=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
s[i]=s[i-1]+a[i];
st[i][0]=i;
}
b[1]=0;
for(int i=2;i<=n;i++)
b[i]=b[i>>1]+1;
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
st[i][j]=mx(st[i][j-1],st[i+(1<<j-1)][j-1]);
for(int i=1;i<=min(n,n-l+1);i++)
add(i,i+l-1,i+r-1);
for(int i=1;i<=m;i++)
{
qwe now=q.top();
q.pop();//cout<<now.i<<" "<<now.l<<" "<<now.r<<" "<<now.p<<" "<<now.v<<endl;
ans+=now.v;
add(now.i,now.l,now.p-1);
add(now.i,now.p+1,now.r);
}
printf("%lld\n",ans);
return 0;
}
bzoj 2006: [NOI2010]超级钢琴【st表+堆】的更多相关文章
- BZOJ 2006: [NOI2010]超级钢琴 ST表+堆
开始想到了一个二分+主席树的 $O(n\log^2 n)$ 的做法. 能过,但是太无脑了. 看了一下题解,有一个 ST 表+堆的优美解法. 你发现肯定是选取前 k 大最优. 然后第一次选的话直接选固定 ...
- bzoj 2006 [NOI2010]超级钢琴——ST表+堆
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2006 每个右端点的左端点在一个区间内:用堆记录端点位置.可选区间,按价值排序:拿出一个后也许 ...
- BZOJ 2006: [NOI2010]超级钢琴 [ST表+堆 | 主席树]
题意: 一个序列,求k个不相同的长度属于\([L,R]\)的区间使得和最大 前缀和,对于每个r找最小的a[l] 然后我yy了一个可持久化线段树做法...也许会T 实际上主席树就可以了,区间k小值 然后 ...
- [BZOJ2006][NOI2010]超级钢琴(ST表+堆)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3679 Solved: 1828[Submit][Statu ...
- 【BZOJ2006】[NOI2010]超级钢琴 ST表+堆
[BZOJ2006][NOI2010]超级钢琴 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以 ...
- BZOJ 2006 NOI2010 超级钢琴 划分树+堆
题目大意:给定一个序列.找到k个长度在[l,r]之间的序列.使得和最大 暴力O(n^2logn),肯定过不去 看到这题的第一眼我OTZ了一下午... 后来研究了非常久别人的题解才弄明确怎么回事...蒟 ...
- Bzoj 2006: [NOI2010]超级钢琴 堆,ST表
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2222 Solved: 1082[Submit][Statu ...
- BZOJ 2006: [NOI2010]超级钢琴( RMQ + 堆 )
取最大的K个, 用堆和RMQ来加速... ----------------------------------------------------------------- #include<c ...
- 【BZOJ-2006】超级钢琴 ST表 + 堆 (一类经典问题)
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2473 Solved: 1211[Submit][Statu ...
- BZOJ 2006: [NOI2010]超级钢琴
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2613 Solved: 1297[Submit][Statu ...
随机推荐
- C. Wilbur and Points---cf596C
http://codeforces.com/problemset/problem/596/C 题目大意: 给你n个数对 确保如果(x,y)存在这个集合 那么 0<=x'<=x &a ...
- 2017CodeM初赛B场
A.合并字符串价值(loj6174) 分析: 普通暴力:枚举两个分界线,那么ans=Σmin(Al(c)+Bl(c),Ar(c)+Br(c)),这样是O(n^2),会TLE 考虑枚举a的分界线,b的答 ...
- Javaee的霸主之spring系列
Spring 顶级框架 谈及微服务,作为当前主流的企业框架Spring,它提供了一整套相关的顶级项目,能让开发者快速的上手实现自己的应用,今天就介绍下Spring旗下各个顶级项目: Spring IO ...
- Markdown中插入图片技巧收集
在操作Markdown时图片应该是最头痛的一件事! 比如要发送一个md文件给对方,如果附带了图片时,那么就要一大堆文件包括图片发给对方等等,如果使用在线图片,那么这个服务器又是一大痛点,因为你不确定这 ...
- 框架-弹出选择框(Jquery传递Json数组)
给一个button按钮,执行方法 Json传值$("body").on("click", "#btnsure", function() { ...
- JUNIT -- springMVC的action进行单元测试
原文:http://blog.csdn.net/gaopeng0071/article/details/49946575 我开发环境springMVC版本3.0.4 样例代码: package com ...
- java nio实现非阻塞Socket通信实例
服务器 package com.java.xiong.Net17; import java.io.IOException; import java.net.InetSocketAddress; imp ...
- apc smart UPS下使用apcupsd注意事项
公司的apc smart UPS安装有管理卡(似乎是AP-9631),server环境有FreeBSD.Windows Server.Linux(CentOS.Ubuntu) 实际使用中有例如以下问题 ...
- win10 powershell 验证下载的包的MD5/sha1的签名值
巧用Win10自带的PowerShell命令校验文件的Hash值(MD5.SHA1/256等) 发表于2017年3月8日由MS酋长 通常为了保证我们从网上下载的文件的完整性和可靠性,我们把文件下载下来 ...
- MySQL InnoDB类型数据库的恢复
MySQL的数据库文件直接复制便可以使用,但是那是指“MyISAM”类型的表. 而使用MySQL-Front直接创建表,默认是“InnoDB”类型,这种类型的一个表在磁盘上只对应一个“*.frm”文 ...