P4128 [SHOI2006]有色图
数学渣渣看题解看得想死Ծ‸Ծ
首先发现这玩意儿看着很像polya定理
\]
然而polya定理只能用来求点的置换,边的置换是布星的
于是我们考虑一个点的置换,把它写成若干循环的乘积\((a_1,a_2,..)(b_1,b_2,...)...\)
1.对于不在同一个循环里的点,比方说一条边\((a_1,b_1)\),那么和它在同一个循环的边有\(((a_1,b_1),(a_2,b_2),...)\)设\(a\)的循环节为\(l_1\),\(b\)的循环节为\(l_2\),那么这个边的循环的循环节长度就是\(lcm(l_1,l_2)\),而总共的边数为\(l_1*l_2\),那么循环的个数就是\(\frac{l_1*l_2}{lcm(l_1,l_2)}=gcd(l_1,l_2)\)
2.对于在同一个循环内的点,设\(a\)的循环节长度为\(l_1\)
如果\(l_1\)长度为奇数,那么循环的长度就是\(l_1\),总共有\(C_{l_1}^{2}\)条边,那么循环的个数就是\(\frac{l-1}2\)
如果\(l_1\)长度为偶数,除了上面的情况之外,还有一种很gg的情况就是比方说\((a_1,a_{l_1/2+1})\)的边所在的循环,这个循环的长度是\(l_1/2\),占的边数为\(l_1/2\),除此之外其他的情况都是一样的,所以循环的个数就是\(\frac{\frac{l(l-1)}{2}-\frac{l}2}{l}+1=\frac l 2\)
那么,总共的边的置换就是
\]
然而如果直接枚举的话复杂度是带一个感叹号的……然而我们只需要知道所有的\(l_i\)就行了,而不需要知道循环里具体是什么数字……所以会T就是我们知道的太多了
于是我们可以枚举\(l_i\),为了不重不漏保证\(l_i\)不降,先考虑如果\(l_i\)互不相同的话有多少种方案。我们可以这样理解,枚举\(n\)个数字的全排列,然后按\(l_i\)从左到右依次分组,那么这样肯定就是一个置换了……然后对于其中的每一个循环\((a_1,a_2,...,a_l)\)来说,\((a_2,a_3,...,a_l,a_1)...\)之类的其实是跟它一样的,也就是说每个循环有\(l_i\)个同构的,所以要除掉,那么方案数就是
\]
然而现在问题是\(l_i\)有可能会相等,如果按上面那样考虑的话有可能会有两个\(l_i\)相等的循环被算到不同的里面了……所以还要设\(B_i\)为\(l_j==i\)的个数,然后除掉他们中间排列的个数,那么方案数应该是
\]
然后dfs暴力找\(l_i\)即可
最后就是
\]
之后就是抄代码了
//minamoto
#include<bits/stdc++.h>
#define int long long
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
using namespace std;
const int N=105;
int ans,P,n,m,fac[N],rec[N];
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int ksm(int x,int y){
int res=1;
for(;y;y>>=1,x=x*x%P)if(y&1)res=res*x%P;
return res;
}
void calc(int x){
int sum=0,mul=1,now=1;
fp(i,1,x)sum+=rec[i]/2;
fp(i,1,x)fp(j,i+1,x)sum+=gcd(rec[i],rec[j]);
fp(i,1,x)(mul*=rec[i])%=P;
fp(i,2,x){
if(rec[i]!=rec[i-1])(mul*=fac[now])%=P,now=0;
++now;
}(mul*=fac[now])%=P,mul=fac[n]*ksm(mul,P-2)%P;
(ans+=mul*ksm(m,sum)%P)%=P;
}
void dfs(int k,int x,int s){
if(!x)calc(k-1);if(x<s)return;
fp(i,s,x)rec[k]=i,dfs(k+1,x-i,i);
}
signed main(){
// freopen("testdata.in","r",stdin);
scanf("%lld%lld%lld",&n,&m,&P),fac[0]=1;
fp(i,1,n)fac[i]=fac[i-1]*i%P;
dfs(1,n,1);(ans*=ksm(fac[n],P-2))%=P;
printf("%lld\n",ans);return 0;
}
P4128 [SHOI2006]有色图的更多相关文章
- 洛谷 P4128 [SHOI2006]有色图 解题报告
P4128 [SHOI2006]有色图 题目描述 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图.如果两张有色图有相同数量的 ...
- 洛谷 P4128: bzoj 1815: [SHOI2006]有色图
题目传送门:洛谷 P4128. 计数好题,原来是 13 年前就出现了经典套路啊.这题在当年应该很难吧. 题意简述: \(n\) 个点的完全图,点没有颜色,边有 \(m\) 种颜色,问本质不同的图的数量 ...
- [SHOI2006] 有色图
Description 给一张 \(n\) 个点的无向完全图,同时还有 \(m\) 种颜色.要求给每条边染色,问有多少种不同的染色方案.两种方案不同当且仅当顶点标号任意重排后不同.\(n\leq 53 ...
- BZOJ1815 SHOI2006有色图(Polya定理)
置换数量是阶乘级别的,但容易发现本质不同的点的置换数量仅仅是n的整数拆分个数,OEIS(或者写个dp或者暴力)一下会发现不是很大,当n=53时约在3e5左右. 于是暴力枚举点的置换,并且发现根据点的置 ...
- bzoj 1815: [Shoi2006]color 有色图 置换群
1815: [Shoi2006]color 有色图 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 136 Solved: 50[Submit][Stat ...
- BZOJ1815: [Shoi2006]color 有色图
BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 ...
- BZOJ 1815: [Shoi2006]color 有色图(Polya定理)
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...
- BZOJ 1815: [Shoi2006]color 有色图 [Polya DFS 重复合并]
传送门 题意: 染色图是无向完全图,且每条边可被染成k种颜色中的一种.两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同.问N个顶点,k种颜色,本质不同的染色图个数(模质数 ...
- [SHOI2006]color 有色图[群论、组合计数]
题意 用 \(m\) 种颜色,给 \(n\) 个点的无向完全图的 \(\frac{n(n-1)}{2}\) 条边染色,两种方案相同当且仅当一种方案交换一些点的编号后可以变成另一种方案.问有多少本质不同 ...
随机推荐
- Linux备份-删除指定日期内文件
#!/usr/bin/env bash source /etc/profile echo " *************** start filter *************** &q ...
- 括号序列(Poj1141)
Poj1141 题目描述: 定义合法的括号序列如下: 1 空序列是一个合法的序列 2 如果S是合法的序列,则(S)和[S]也是合法的序列 3 如果A和B是合法的序列,则AB也是合法的序列 例如:下面的 ...
- hdu - 1150 Machine Schedule (二分图匹配最小点覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1150 有两种机器,A机器有n种模式,B机器有m种模式,现在有k个任务需要执行,没切换一个任务机器就需要重启一次, ...
- 本地配置nginx的https
前文:因为要用谷歌下的getUserMedia方法,而getUserMedia方法只能在https下才能调用,所以在本地搭建https来测试,现在说说步骤. 步骤1:下载nginx-1.10.3.zi ...
- 笔记:Javac编译器
Javac编译器是把 *.java 文件转换为 *.class 文件,是一个前端编译器:对应着有一种把字节码转变为机器码的编译器,称为JIT编译器(Just In Time Compiler),比如 ...
- 洛谷 P1081 开车旅行(70)
P1081 开车旅行 题目描述 小AA 和小BB 决定利用假期外出旅行,他们将想去的城市从 11到 NN 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 ii的海 ...
- 洛谷 P1555 尴尬的数字
P1555 尴尬的数字 题目背景 Bessie刚刚学会了不同进制数之间的转换,但是她总是犯错误,因为她的两个前蹄不能轻松的握住钢笔. 题目描述 每当Bessie将一个数转换成新的进制时,她总会写错一位 ...
- JDBC的Statement对象
以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/statements.html: 一旦获得了数据库的连接,就可以和数据库进行交互.JDBC的Statem ...
- mysql计算两个日期之间的天数
MYSQL自带函数计算给定的两个日期的间隔天数 有两个途径可获得 1.利用TO_DAYS函数 select to_days(now()) - to_days('20120512') 2 ...
- ETL全量单表同步简述
ETL全量单表同步简述 1. 实现需求 当原数据库的表有新增.更新.删除操作时,将改动数据同步到目标库对应的数据表. 2. 设计思路 设计总体流程图如下: 注意点: 1.数据库合并时,选择正确的数据源 ...