Segments--poj3304(判断直线与线段之间的关系)
http://poj.org/problem?id=3304
给你几条线段 然后 让你找到一条直线让他在这条直线上的映射有一个重合点
如果有这条直线的话 这个重合的部分的两个端点一定是某两条线段的端点
所以只需要枚举每个点连成的直线能不能跟所有的线段相交就行了
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>
#include<math.h>
#define N 200
const double ESP = 1e-;
struct Point
{
double x, y; Point(double x=,double y=):x(x),y(y) {}
Point operator + (const Point &temp)const{
return Point(x+temp.x, y+temp.y);
}
Point operator - (const Point &temp)const{
return Point(x-temp.x, y-temp.y);
}
bool operator == (const Point &temp)const{
return (fabs(x-temp.x) < ESP && fabs(y-temp.y) < ESP);
}
int operator * (const Point &temp)const{
double t=(x*temp.y)-(y*temp.x);
if(t > ESP)
return ;
if(fabs(t) < ESP)
return ;
return -;
}
}; struct node
{
Point A,B;
node(Point A=,Point B=):A(A),B(B){} }; int Find(node t,node a[],int n)
{
for(int i=;i<n;i++)
{
int k=fabs((a[i].A-t.A)*(t.B-t.A)+(a[i].B-t.A)*(t.B-t.A)); if(k==)
return false;
}
return true;
} int main()
{
int n, T;
scanf("%d", &T);
while(T--)
{
Point p[N];
node a[N];
scanf("%d", &n);
double x1,x2,y2,y1;
int b=;
for(int i=;i<n;i++)
{
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
p[b++]=Point(x1,y1);
p[b++]=Point(x2,y2);
a[i]=node(p[b-],p[b-]);
}
int ok=;
for(int i=; i<b && !ok; i++)
{
for(int j=i+; j<b && !ok; j++)
{
if(p[i] == p[j])
continue;
ok = Find(node(p[i],p[j]),a,n);
}
}
if(ok)
printf("Yes!\n");
else
printf("No!\n");
}
return ;
}
Segments--poj3304(判断直线与线段之间的关系)的更多相关文章
- poj 3304 Segments(计算直线与线段之间的关系)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10921 Accepted: 3422 Descrip ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- Segments---poj3304(判断直线与线段的位置关系)
题目链接:http://poj.org/problem?id=3304 题意:给你n个线段,求是否有一条直线与所有的线段都相交,有Yes,没有No; 枚举所有的顶点作为直线的两点,然后判断这条直线是否 ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- 实验12:Problem D: 判断两个圆之间的关系
Home Web Board ProblemSet Standing Status Statistics Problem D: 判断两个圆之间的关系 Problem D: 判断两个圆之间的关系 T ...
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- poj3304(叉积判断直线和线段相交)
题目链接:https://vjudge.net/problem/POJ-3304 题意:求是否能找到一条直线,使得n条线段在该直线的投影有公共点. 思路: 如果存在这样的直线,那么在公共投影点作直线的 ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- Segments POJ 3304 直线与线段是否相交
题目大意:给出n条线段,问是否存在一条直线,使得n条线段在直线上的投影有至少一个公共点. 题目思路:如果假设成立,那么作该直线的垂线l,该垂线l与所有线段相交,且交点可为线段中的某两个交点 证明:若有 ...
随机推荐
- mysql-mmm 部署高可用集群
集群的部署(mysql-mmm + 主从同步) 什么是集群? 多台服务器提供相同的服务 集群的好处? 节省成本. 配置集群? 准备环境:准备4台数据库服务器 准备服务器,能够ping 4 台数据库服务 ...
- 7-Java-C(四平方和)
题目描述: 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^2 + ...
- diff - 找出两个文件的不同点
总览 diff [选项] 源文件 目标文件 描述 在最简单的情况是, diff 比较两个文件的内容 (源文件 和 目标文件). 文件名可以是 - 由标准输入设备读入的文本. 作为特别的情况是, dif ...
- zabbix 报警通知选项配置
{TRIGGER.STATUS} host: {HOSTNAME} IP: {HOST.IP} events_time:{EVENT.DATE} {EVENT.TIME} notice_time:{D ...
- HTML习题附答案
第一章 1.HTML指的是( A ). A超文本标记语言(Hyper Text Markup Language) B家庭工具标记语言(Home Tool Markup Language) C超 ...
- Springboot 配置文件与对象之间进行映射之@ConfigurationProperties
一.将配置文件与实体类绑定1.1.将yaml配置文件的属性映射到Javabean中1.1.1.yaml配置文件注意:键值对的语法,键:之后必须要有空格 1.1.2.Javabean 定义注意:java ...
- 手把手入门docker (好多图)
1.什么是docker? ---->我的理解是将许多应用一起打包成一个镜像,拿这个镜像去其他服务器上运行起来就可以.不需要单个单个去配置啦. 2.怎样在window下的安装. ---->刚 ...
- IOS学习笔记3—Objective C—简单的内存管理
今天简述一下简单的内存管理,在IOS5.0以后Apple增加了ARC机制(Automatic Reference Counting),给开发人员带来了不少的方便,但是为了能更好的理解IOS内存管理机制 ...
- 分享点干货(此this非彼this)this的详细解读
在javascript编程中,this关键字经常让初学者感到迷惑,这里,针对此this根据查阅的资料和个人的理解分享一下,纯手打,大神勿喷. 首先先说一下this的指向,大致可以分为以下四种. 1.作 ...
- “打开ftp服务器上的文件夹时发生错误,请检查是否有权限访问该文件夹"
阿里云虚拟主机上传网站程序 问题场景:网页制作完成后,程序需上传至虚拟主机 注意事项: 1.Windows系统的主机请将全部网页文件直接上传到FTP根目录,即 / . 2. 如果网页文件较多,上传较慢 ...