BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)
Description
Input
Output
输出小A胜利的方案总数。答案对1000000007取模。
Sample Input
Sample Output
HINT
1<=d<=k<=n<=10000, k为偶数,k<=100。
Solution
我组合计数和$DP$真的是菜的真实……
首先这个题必须加一个限制条件:先手只能向右,后手只能向左,不然下面的做法会被黄学长找出来反例……?QAQ 不过还是能过的我也不知道为什么
首先比较容易发现,因为每个人操作的方向是一定的,所以可以把一对相邻的黑白棋中间的格子数看成一堆石子,那么这个就变成了一个有$k/2$堆的$Nim$游戏。只不过这个$Nim$游戏一次可以取$1 \sim d$堆,也就是$k-Nim$游戏。
$k-Nim$游戏的先手必败态是把每堆石子转换为二进制后,其中每一位上为1的个数和都能被$(d+1)$整除。
感性理解还是挺正确的……具体证明戳这里吧。
然后就可以开始$DP$了。设$f[i][j]$表示$DP$到了二进制的第$i$位,用了$j$个棋子的必败态方案数。
$f[i][j]= \sum f[i-1][j-l \times (d+1) \times 2^i]*C_{k/2}^{l \times (d+1)}$
(这一次用了$l \times (d+1) \times 2^i$个石子,乘组合数是因为从$k/2$堆石子里选出$k \times (d+1)$堆。)
最后答案为$C_n^k-\sum_{i=0}^{n-k}f[15][i] \times C_{n-k/2-i}^{k/2}$
(乘组合数是因为每对棋子在棋盘上的距离确定了,就差每对棋子的排列方式了。)
Code
#include<iostream>
#include<cstdio>
#define N (10009)
#define LL long long
#define MOD (1000000007)
using namespace std; LL n,k,d,p[],C[N][],f[][N]; void Init()
{
p[]=;
for (int i=; i<=; ++i) p[i]=p[i-]<<;
C[][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=min(*k,(LL)i); ++j)
{
(C[i][j]+=C[i-][j])%=MOD;
if (j) (C[i][j]+=C[i-][j-])%=MOD;
}
} int main()
{
scanf("%lld%lld%lld",&n,&k,&d);
Init();
f[][]=;
for (int i=; i<=; ++i)
for (int j=; j<=n-k; ++j)
for (int l=; l*(d+)<=k/&&l*(d+)*p[i-]<=j; ++l)
(f[i][j]+=f[i-][j-l*(d+)*p[i-]]*C[k/][l*(d+)]%MOD)%=MOD;
LL ans=;
for (int i=; i<=n-k; ++i)
(ans+=f[][i]*C[n-k/-i][k/]%MOD)%=MOD;
ans=(C[n][k]-ans+MOD)%MOD;
printf("%lld\n",ans);
}
BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)的更多相关文章
- BZOJ 2281 Luogu P2490 [SDOI2011]黑白棋 (博弈论、DP计数)
怎么SDOI2011和SDOI2019的两道题这么像啊..(虽然并不完全一样) 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?i ...
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)
题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】
题目 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子 ...
- bzoj2281 [Sdoi2011]黑白棋
一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...
- luoguP2490 [SDOI2011]黑白棋 博弈论 + 动态规划
博弈部分是自己想出来的,\(dp\)的部分最后出了点差错QAQ 从简单的情况入手 比如\(k = 2\) 如果有这样的局面:$\circ \bullet $,那么先手必输,因为不论先手怎样移动,对手都 ...
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
随机推荐
- C# 实现寻峰算法的简单优化(包含边峰,最小峰值,峰距)
核心寻峰算法的原理参考Ronny,链接:投影曲线的波峰查找, C#翻译原理代码参考sowhat4999,链接:C#翻译Matlab中findpeaks方法 前人种树,后人乘凉.感谢原作者详细的解释 ...
- 使用css实现炫酷的横屏滚动效果
炫酷的横屏滚动效果css实现 DEMO: https://codepen.io/kobako/pen/BxVLLm 我们对滚动条都不陌生.平时浏览的网页,进度条通常是垂直方向的,内容从上往下排列.但是 ...
- spring boot入门笔记 (三) - banner、热部署、命令行参数
1.一般项目启动的时候,刚开始都有一个<spring>的标志,如何修改呢?在resources下面添加一个banner.txt就行了,springboot会自动给你加载banner.txt ...
- 中小型研发团队架构实践七:集中式日志ELK
一.集中式日志 日志可分为系统日志.应用日志以及业务日志,系统日志给运维人员使用,应用日志给研发人员使用,业务日志给业务操作人员使用.我们这里主要讲解应用日志,通过应用日志来了解应用的信息和状态,以及 ...
- Vue 中的 v-cloak 解读
v-cloak 的作用和用法 用法: 这个指令保持在元素上直到关联实例结束编译.和 CSS 规则如 [v-cloak] { display: none } 一起用时,这个指令可以隐藏未编译的 Must ...
- python学习之老男孩python全栈第九期_day014知识点总结
# 迭代器和生成器# 迭代器 # 双下方法:很少直接调用的方法,一般情况下,是通过其他语法触发的# 可迭代的 --> 可迭代协议:含有__iter__的方法( '__iter__' in dir ...
- [转]关于浏览器css选择器性能优化
作为一个前端开发, 我觉得很有必要了解浏览器对css选择器的解析,因为这个关系到页面的渲染,高效的方式.避开开销大的方式这些无疑为网站加载缩短了时间. 最近在新的项目中陷入了一个误区,也是出于对jqu ...
- opencv3.2.0实现视频抽帧,并保存成图片
.实现指定帧数的抽取.和全部帧数的抽取,并保存到指定目录. 在QT新建一个控制台程序,程序源码如下:(程序实现每十帧获取一次帧) #include <QCoreApplication> # ...
- 润乾V5手机报表说明文档
1.手机报表实例页面简要说明 index.jsp 是报表资源列表页面: mbReport.jsp 是报表展现页面: mbParam.jsp是参数报表展现页面: echarts.jsp是带有echart ...
- AWK与SED命令
linux系统比较常用的AWK与SED命令,这两个命令主要是格式化文本文件信息.接下来将详细介绍这两个命令的基本用法以及可以实现的功能. 一.AWK命令 AWK语言的基本功能是在文件或者字符串中基于指 ...