传送门啦

这个题不用二进制优化的话根本不行,现学的二进制优化,调了一段时间终于A了,不容易。。

如果不懂二进制优化的话可以去看我那个博客

二进制优化多重背包入口

不想TLE,不要打memset,一定要用快读,听别人说不用快读卡三个点,幸亏我习惯打快读。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10005; inline int read(){
char ch = getchar();
int f = 1 ,x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} int n,m,C,v[maxn],w[maxn],d[maxn],a[maxn],b[maxn],c[maxn];
long long f[maxn]; int main(){
n = read(); m = read(); C = read();
for(int i=1;i<=n;i++) {
v[i] = read(); w[i] = read(); d[i] = read();
if(d[i] * v[i] > C){
for(int j=v[i];j<=C;j++)
f[j] = max(f[j] , f[j - v[i]] + w[i]);
}
else {
for(int k=1;k<=d[i];k<<=1){
for(int j=C;j>=v[i]*k;j--)
f[j] = max(f[j] , f[j - v[i] * k] + w[i] * k);
d[i] -= k;
}
}
if(d[i] > 0){
for(int j=C;j>=v[i]*d[i];j--)
f[j] = max(f[j] , f[j - v[i] * d[i]] + w[i] * d[i]);
}
}
for(int i=1;i<=m;i++){
a[i] = read(); b[i] = read(); c[i] = read();
for(int j=C;j>=0;j--)
for(int k=0;k<=j;k++)
f[j] = max(f[j] , f[j - k] + (a[i] * k + b[i]) * k + c[i]);
}
printf("%lld",f[C]);
return 0;
}

洛谷P1782 旅行商的背包的更多相关文章

  1. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  2. 洛谷.1782.旅行商的背包(背包DP 单调队列)

    题目链接(卡常背包) 朴素的多重背包是: \(f[i][j] = \max\{ f[i-1][j-k*v[i]]+k*w[i] \}\),复杂度 \(O(nV*\sum num_i)\) 可以发现求\ ...

  3. 洛谷P1523 旅行商简化版(DP)

    题目: P1523 旅行商简化版 解析 可以看做是两个人同时从西往东走,经过不一样的点,走到最东头的方案数 设\(f[i][j]\)表示一个人走到i,一个人走到j的最短距离(\(i<j\)) 第 ...

  4. Luogu P1782 旅行商的背包

    题目传送门 卡常背包果然名不虚传 算法主体就是两种背包分开跑,先跑多重背包,再跑奇货 不知道为什么,这题二进制拆分好像要比单调队列优化快一些 然后这题毒瘤的地方就出来了: 如果一件物品的体积\(\ti ...

  5. 洛谷 P2014 选课(树形背包)

    洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...

  6. 洛谷【P1523】旅行商的背包(算法导论 15-1) 题解

    P1523 旅行商简化版 题目背景 欧几里德旅行商\((Euclidean Traveling Salesman)\)问题也就是货郎担问题一直是困扰全世界数学家.计算机学家的著名问题.现有的算法都没有 ...

  7. 洛谷 P4389: 付公主的背包

    题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i ...

  8. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

  9. 【洛谷】【动态规划/01背包】P2925 [USACO08DEC]干草出售Hay For Sale

    [题目描述:] 约翰遭受了重大的损失:蟑螂吃掉了他所有的干草,留下一群饥饿的牛.他乘着容量为C(1≤C≤50000)个单位的马车,去顿因家买一些干草. 顿因有H(1≤H≤5000)包干草,每一包都有它 ...

随机推荐

  1. spring-session使用配置(分布式共享session配置)

    1. 添加依赖 <dependency> <groupId>org.springframework.session</groupId> <artifactId ...

  2. js子节点children和childnodes的用法

    想要获取子节点的数量,有几种办法. childNodes 它会把空的文本节点当成节点, <ul> 文本节点 <li>元素节点</li> 文本节点 <li> ...

  3. fcntl文件锁操作

    文件锁经常应用于两个方面:1.一是锁定文件中的临界数据,比如并发投票时文件记录的投票数2.二是利用具有互斥性质的写锁,实现进程的并发控制. /*使用文件锁*/<F5>#include &l ...

  4. NAT ------ 内网的主机如何通过路由器与外网的主机通信

    内网主机A,路由器B,外网主机C 使用了两个协议: 路由:位于网络层,为数据包提供一个寻径的算法,不改变数据包的源IP和目的IP,但是会修改源MAC和目的MAC,只在同个网段的进行数据的转发 NAT: ...

  5. jenkins权限管理,不同用户显示不同项目

    1.安装Role-based Authorization Strategy插件 系统管理-管理插件-可选插件中安装Role-based Authorization Strategy 安装后重启jenk ...

  6. python的dict()字典数据类型的方法详解以及案例使用

    一.之前的回顾 # int  数字 # str 字符串 # list 列表 # tuple 元组 # dict 字典 字典中最重要的方法 keys() values() items() get upd ...

  7. JAVA 线程池基本总结

    合理利用线程池能够带来三个好处. 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第三:提高线程 ...

  8. bzoj千题计划156:bzoj1571: [Usaco2009 Open]滑雪课Ski

    http://www.lydsy.com/JudgeOnline/problem.php?id=1571 DP不一定全部全状态转移 贪心的舍去一些不合法的反而更容易转移 在一定能力范围内,肯定滑雪所需 ...

  9. 动态规划:树形DP-选课(树形背包)

    学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修了这M门课并考核通过就能获得相应的学分.在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选 ...

  10. PyQt4 里的表格部件的使用方法: QTableWidget

    PyQt4 里的表格部件的使用方法: QTableWidget QT下QTableWidget使用方法小结 - - 博客频道 - CSDN.NET http://blog.csdn.net/jingz ...