P3807 【模板】卢卡斯定理
P3807 【模板】卢卡斯定理
求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) )
错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱我帮你)
Pre
好的我们继续恶补数学
首先复习一下 \(O(N)\) 求质数逆元的方法$$inv[1] = 1$$$$inv[i] = (p - p / i) * inv[p % i] % p (i >= 2)$$
LL inv[maxn];
void get_inv(LL n){
inv[1] = 1;
for(LL i = 2;i <= n;i++)inv[i] = (p - p / i) * inv[p % i] % p;
}
然后是 \(O(m)\) 求 \(C_{n}^{m} \% p\):$$C_{n}^{m}% p = \frac{n!}{m!(n - m)!}% p$$$$=\frac{(n - m + 1) * (n - m +2) * ... * n}{m!}% p$$$$=(\frac{n - m + 1}{1}% p) * (\frac{n - m + 2}{2}% p) * ... * (\frac{n}{m}% p)$$
其中除法取模可以用上面的逆元计算, 求解一个组合数的复杂度为 \(O(m)\)
LL C(LL n, LL m){
LL ans = 1;
for(LL i = 1;i <= m;i++)ans = ans * (n - m + i) * inv[i] % p;
return ans;
}
最后就是卢卡斯定理, 当 \(p\) 为质数时有:$$C_{n}^{m} % p = C_{n % p}^{m % p} * C_{n / p}^{m / p} % p$$
其中取模过了的部分可以很快的计算出来, 另一部分继续递归卢卡斯即可
LL lucas(LL n, LL m, LL p){
if(m == 0)return 1;
return C(n % p, m % p) * lucas(n / p, m / p, p) % p;
}
Solution
于是乎掌握了上边的知识后就变成裸题啦
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 200019;
LL n, m, p;
LL inv[maxn];
void get_inv(LL n){
inv[1] = 1;
for(LL i = 2;i <= n;i++)inv[i] = (p - p / i) * inv[p % i] % p;
}
LL C(LL n, LL m){
LL ans = 1;
for(LL i = 1;i <= m;i++)ans = ans * (n - m + i) * inv[i] % p;
return ans;
}
LL lucas(LL n, LL m, LL p){
if(m == 0)return 1;
return C(n % p, m % p) * lucas(n / p, m / p, p) % p;
}
int main(){
LL T = RD();
while(T--){
n = RD(), m = RD(), p = RD();
get_inv(m);
printf("%lld\n", lucas(n + m, m, p));
}
return 0;
}
P3807 【模板】卢卡斯定理的更多相关文章
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- 887. 求组合数 III(模板 卢卡斯定理)
a,b都非常大,但是p较小 前边两种方法都会超时的 N^2 和NlongN 可以用卢卡斯定理 P*longN*longP 定义: 代码: import java.util.Scanner ...
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- P3807【模板】卢卡斯定理
题解大部分都是递归实现的,给出一种非递归的形式 话说上课老师讲的时候没给代码,然后自己些就写成了这样 对于质数\(p\)给出卢卡斯定理: \[\tbinom{n}{m}=\tbinom{n \bmod ...
随机推荐
- Bing词典vs有道词典比对测试报告——体验篇之成长性及用户控制权
成长性: 会记住曾经查询过的单词或例句与有道词典实现基本一样,并无特别亮点. 用户有控制权: 必应词典和有道词典都能实现基本的查询前进和后退.以及无法查找结果,能顺利进行反馈. 我们在输入完单词按下回 ...
- b7
组员:陈锦谋 过去两天完成了哪些任务: 细节最后完善 明日计划: 无 还剩下哪些任务: 无 有哪些困难: 暂无 有哪些收获和疑问: 无
- 灵悟礼品网上专卖店——第三阶段Sprint
一.小组成员: 洪雪意(产品负责人) 陈淑筠(Master) 二.组内人员任务情况 已完成的任务: 陈淑筠:主页面的设计 洪雪意:导航条的改进和页面中插入页面的功能 正在进行的任务: 陈淑筠:主页面的 ...
- JAVA之路(二)
学道酬勤,这是第二次学习JAVA,感觉如醍醐灌顶一样,理解很多思想和道理. 本博只是自己对JAVA的一些理解,具体定义以及用法百科里有. 我为什么在博客园内记录自己的学习过程呢,因为我想有人知道我在学 ...
- OSI协议和TCP/IP协议笔记
1.OSI协议: 第7层应用层:OSI中的最高层.是用户与网络的接口.该层通过应用程序来完成网络用户的应用需求,如文件传输.收发电子邮件等.在此常见的协议有:HTTP,HTTPS,FTP,TELNET ...
- Windows Apache(ApacheHaus)安装配置教程
1,Apache下载 选择一个版本,点击Download 点击File For Microsoft Windows 由于Apache HTTP Server官方不提供二进制(可执行)的发行版,所以我们 ...
- 解决tomcat登录需要给角色授权
1:编辑/usr/local/tomcat/conf/tomcat-users.xml文件,在没有注释的内容中添加: <role rolename="manager-gui" ...
- HDU 2140 Michael Scofield's letter
http://acm.hdu.edu.cn/showproblem.php?pid=2140 Problem Description I believe many people are the fan ...
- CPU结合CS、IP寄存器进行执行程序
上一篇介绍了CS.IP两个寄存器内容,当我们运行一个可执行文件时,我们需要另外一个程序来将这个可执行文件加载到内存当中,关于这个加载可执行文件的程序,我们在这里不管他,点一下即可,一般是通过操作系统的 ...
- Mysql的两种引擎的区别
Innodb引擎概述 Innodb引擎提供了对数据库ACID事务的支持,并且实现了SQL标准的四种隔离级别.该引擎还提供了行级锁和外键约束,它的设计目标是处理大容量数据库系统,它本身其实就是基于MyS ...