TJOI2013数字根
题面链接
sol
我们先不考虑\(0\),发现数字根\(=\)它\(mod 9\)。
我们前缀和一波,把区间和变成两数相减。
对于每个\(v\in\{0-8\}\),(这里面的\(mod 9=0\)的相当于数字根为9),我们维护每个数\(a\)往后第一个可以和它组成\((b-a) mod 9=v\)的位置,称为\(OJBK\)位置。
那么对于一段区间,求出每个\(v\in\{0-8\}\)的最小\(OJBK\)位置,若它在区间里面,那么这段区间就可以组成这个\(v\)。
至于\(0\)我们特判一下区间内有没有\(0\),然后忽略\(0\)。
总复杂度\(O(9nlogn+9q)\)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gt getchar()
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
inline int in()
{
int k=0;char ch=gt;
while(ch<'-')ch=gt;
while(ch>'-')k=k*10+ch-'0',ch=gt;
return k;
}
const int N=1e5+5;
int c[N],a[N],st[10][N][20],las[10],lo[N],p[N];
inline int Get_mi(int x,int l,int r)
{
l=std::max(l,0),r=std::max(r,0);
if(l>r)return 0x3f3f3f3f;int k=lo[r-l+1];
return std::min(st[x][l][k],st[x][r-(1<<k)+1][k]);
}
int main()
{
int n=in(),tot=0;
for(int i=1;i<=n;++i)
{
int t=in();p[i]=t;
if(t){a[++tot]=t%9;continue;}
++c[i];
}
for(int i=1;i<=n;++i)c[i]+=c[i-1];
for(int i=1;i<=tot;++i)a[i]=(a[i]+a[i-1])%9;
for(int i=2;i<=tot;++i)lo[i]=lo[i>>1]+1;
for(int i=0;i<9;++i)
{
memset(las,0x3f,sizeof las);
for(int j=tot;~j;--j)
{
int res=(a[j]+i)%9;
st[i][j][0]=las[res];las[a[j]]=j;
}
for(int j=1;(1<<j)<=tot;++j)
for(int k=0;k+(1<<j)<=tot;++k)
st[i][k][j]=std::min(st[i][k][j-1],st[i][k+(1<<j-1)][j-1]);
}
int q=in();
while(q--)
{
memset(las,-1,sizeof las);
int L=in(),R=in(),cnt=0,l=L-c[L],r=R-c[R],fg=0;
if(R-L!=r-l)fg=1;if(!p[L])++l;
if(Get_mi(0,l-1,r-1)<=r)las[++cnt]=9;
for(int i=8;i;--i)
if(Get_mi(i,l-1,r-1)<=r)las[++cnt]=i;
if(fg)las[++cnt]=0;
for(int i=1;i<=5;++i)printf("%d ",las[i]);puts("");
}
return 0;
}
TJOI2013数字根的更多相关文章
- 洛谷 P3962 [TJOI2013]数字根 解题报告
P3962 [TJOI2013]数字根 题意 数字根:这个数字每一位的数字加起来求和,反复这个过程直到和小于10. 给出序列\(a\),询问区间\([l,r]\)连续的子区间里最大前5个不同的数字根, ...
- Luogu P3962 [TJOI2013]数字根 st
题面 我先对数字根打了个表,然后得到了一个结论:\(a\)的数字根=\((a-1)mod 9+1\) 我在询问大佬后,大佬给出了一个简单的证明: \(\because 10^n\equiv 1(mod ...
- 洛谷3962 [TJOI2013]数字根
题目描述 一个数字的数字根定义为:这个数字每一位的数字加起来求和,反复这个过程直到和小于10.例如,64357的数字跟为7,因为6+4+3+5+7=25,2+5=7个区间的数字根定义为这个区间所有数字 ...
- 数字根(digital root)
来源:LeetCode 258 Add Dights Question:Given a non-negative integer num , repeatedly add all its digi ...
- 1. 数字根(Digital Root)
数字根(Digital Root)就是把一个自然数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这个一位数便是原来数字的数字根.例如: 198的数字根为9(1+9+8=18,1 ...
- ACM之数论数字根
先来看一道杭电的数字根问题 此题的大大意是输入一个数.假设它不是一位的数字的话,那么我们就将它的每一位都相加,相加后假设还是两位或者很多其它的话那么我们继续取出它的每一位数字进行相加.知道等到单个数字 ...
- LeetCode 258 Add Digits(数字相加,数字根)
翻译 给定一个非负整型数字,反复相加其全部的数字直到最后的结果仅仅有一位数. 比如: 给定sum = 38,这个过程就像是:3 + 8 = 11.1 + 1 = 2.由于2仅仅有一位数.所以返回它. ...
- Digital root(数根)
关于digital root可以参考维基百科,这里给出基本定义和性质. 一.定义 数字根(Digital Root)就是把一个数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这 ...
- 递归练习(C语言)
本文地址:http://www.cnblogs.com/archimedes/p/recursive-practice.html,转载请注明源地址. 1.炮弹一样的球状物体,能够堆积成一个金字塔,在顶 ...
随机推荐
- python装饰器(披着羊皮的狼)
python装饰器的作用是在不改变原有函数的基础上,对函数的功能进行增加或者修改. 装饰器语法是python语言更加优美且避免很多繁琐的事情,flask中配置路由的方式便是装饰器. 首先python中 ...
- GitHub笔记(二)——远程仓库的操作
二 远程仓库 1 创建联系 第1步:创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到下一 ...
- 安装keystone时创建用户失败
系统:centos7.3 版本:openstack ocata 1.问题描述 安装keystone在创建用户时报错: The request you have made requires authen ...
- python3 拼接字符串的7种方法
1.直接通过(+)操作符拼接 1 2 >>> 'Hello' + ' ' + 'World' + '!' 'Hello World!' 使用这种方式进行字符串连接的操作效率低下,因为 ...
- Golang 2018.1.2激活及使用技巧
对于做Java开发的同学使用最熟练的开发工具应该当属Eclipse了吧,但是做到后面的话一般都会转用Intellij Idea.至于转用Intellij有什么好处我就不赘述了,简言之就是功能强大,使用 ...
- SpringCloud学习:Eureka、Ribbon和Feign
Talk is cheap,show me the code , 书上得来终觉浅,绝知此事要躬行.在自己真正实现的过程中,会遇到很多莫名其妙的问题,而正是在解决这些问题的过程中,你会发现自己之前思维的 ...
- 【Alpha】阶段第六次Scrum Meeting
[Alpha]阶段第六次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 增加教师接口 增加上课信息接口 赵智源 构建后端测试点测试框架 构建后测试点测试框架 肖 ...
- "私人助手"NABCD分析
---恢复内容开始--- 团队开发项目“私人助手”需求分析NABCD模型: (1)N(Need需求):“私人助手”解决了几类人遇到非常多的事情,非常繁琐,“私人助手”为用户解决这个问题,让用户的工作更 ...
- bata3
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...