TJOI2013数字根
题面链接
sol
我们先不考虑\(0\),发现数字根\(=\)它\(mod 9\)。
我们前缀和一波,把区间和变成两数相减。
对于每个\(v\in\{0-8\}\),(这里面的\(mod 9=0\)的相当于数字根为9),我们维护每个数\(a\)往后第一个可以和它组成\((b-a) mod 9=v\)的位置,称为\(OJBK\)位置。
那么对于一段区间,求出每个\(v\in\{0-8\}\)的最小\(OJBK\)位置,若它在区间里面,那么这段区间就可以组成这个\(v\)。
至于\(0\)我们特判一下区间内有没有\(0\),然后忽略\(0\)。
总复杂度\(O(9nlogn+9q)\)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gt getchar()
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
inline int in()
{
int k=0;char ch=gt;
while(ch<'-')ch=gt;
while(ch>'-')k=k*10+ch-'0',ch=gt;
return k;
}
const int N=1e5+5;
int c[N],a[N],st[10][N][20],las[10],lo[N],p[N];
inline int Get_mi(int x,int l,int r)
{
l=std::max(l,0),r=std::max(r,0);
if(l>r)return 0x3f3f3f3f;int k=lo[r-l+1];
return std::min(st[x][l][k],st[x][r-(1<<k)+1][k]);
}
int main()
{
int n=in(),tot=0;
for(int i=1;i<=n;++i)
{
int t=in();p[i]=t;
if(t){a[++tot]=t%9;continue;}
++c[i];
}
for(int i=1;i<=n;++i)c[i]+=c[i-1];
for(int i=1;i<=tot;++i)a[i]=(a[i]+a[i-1])%9;
for(int i=2;i<=tot;++i)lo[i]=lo[i>>1]+1;
for(int i=0;i<9;++i)
{
memset(las,0x3f,sizeof las);
for(int j=tot;~j;--j)
{
int res=(a[j]+i)%9;
st[i][j][0]=las[res];las[a[j]]=j;
}
for(int j=1;(1<<j)<=tot;++j)
for(int k=0;k+(1<<j)<=tot;++k)
st[i][k][j]=std::min(st[i][k][j-1],st[i][k+(1<<j-1)][j-1]);
}
int q=in();
while(q--)
{
memset(las,-1,sizeof las);
int L=in(),R=in(),cnt=0,l=L-c[L],r=R-c[R],fg=0;
if(R-L!=r-l)fg=1;if(!p[L])++l;
if(Get_mi(0,l-1,r-1)<=r)las[++cnt]=9;
for(int i=8;i;--i)
if(Get_mi(i,l-1,r-1)<=r)las[++cnt]=i;
if(fg)las[++cnt]=0;
for(int i=1;i<=5;++i)printf("%d ",las[i]);puts("");
}
return 0;
}
TJOI2013数字根的更多相关文章
- 洛谷 P3962 [TJOI2013]数字根 解题报告
P3962 [TJOI2013]数字根 题意 数字根:这个数字每一位的数字加起来求和,反复这个过程直到和小于10. 给出序列\(a\),询问区间\([l,r]\)连续的子区间里最大前5个不同的数字根, ...
- Luogu P3962 [TJOI2013]数字根 st
题面 我先对数字根打了个表,然后得到了一个结论:\(a\)的数字根=\((a-1)mod 9+1\) 我在询问大佬后,大佬给出了一个简单的证明: \(\because 10^n\equiv 1(mod ...
- 洛谷3962 [TJOI2013]数字根
题目描述 一个数字的数字根定义为:这个数字每一位的数字加起来求和,反复这个过程直到和小于10.例如,64357的数字跟为7,因为6+4+3+5+7=25,2+5=7个区间的数字根定义为这个区间所有数字 ...
- 数字根(digital root)
来源:LeetCode 258 Add Dights Question:Given a non-negative integer num , repeatedly add all its digi ...
- 1. 数字根(Digital Root)
数字根(Digital Root)就是把一个自然数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这个一位数便是原来数字的数字根.例如: 198的数字根为9(1+9+8=18,1 ...
- ACM之数论数字根
先来看一道杭电的数字根问题 此题的大大意是输入一个数.假设它不是一位的数字的话,那么我们就将它的每一位都相加,相加后假设还是两位或者很多其它的话那么我们继续取出它的每一位数字进行相加.知道等到单个数字 ...
- LeetCode 258 Add Digits(数字相加,数字根)
翻译 给定一个非负整型数字,反复相加其全部的数字直到最后的结果仅仅有一位数. 比如: 给定sum = 38,这个过程就像是:3 + 8 = 11.1 + 1 = 2.由于2仅仅有一位数.所以返回它. ...
- Digital root(数根)
关于digital root可以参考维基百科,这里给出基本定义和性质. 一.定义 数字根(Digital Root)就是把一个数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这 ...
- 递归练习(C语言)
本文地址:http://www.cnblogs.com/archimedes/p/recursive-practice.html,转载请注明源地址. 1.炮弹一样的球状物体,能够堆积成一个金字塔,在顶 ...
随机推荐
- 人工智能AI芯片与Maker创意接轨 (上)
近几年来人工智能(Artificial Intelligence, AI)喴的震天价响,吃也要AI,穿也要AI,连上个厕所也要来个AI智能健康分析,生活周遭食衣住行育乐几乎无处不AI,彷佛已经来到科幻 ...
- 背景颜色 - bootStrap4常用CSS笔记
.bg-primary 重要的背景颜色 .bg-success 执行成功背景颜色 .bg-info 信息提示背景颜色 .bg-warning 警告背景颜色 .bg-danger 危险背景颜色 .bg- ...
- trampoline蹦床函数解决递归调用栈问题
递归函数的调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出.怎么做可以减少调用栈呢?就是采用"循环"换掉"递归". 下面是一个正常的递归函数. functi ...
- 比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区 ...
- mongodb基本使用(一)
1.启动.停止和重启mongodb服务 brew services start mongodb ---启动 brew services stop mongodb --停止 brew services ...
- SQL 查一年内的数据
--查询今年的 select * from 表 where datediff(yy,时间字段,GETDATE())=0 --查询去年的 select * from 表 where datediff(y ...
- 超级迷宫之NABCD
模式之一:双人模式 N:基于双人之间的竞争与协作,朋友之间可以有一个竞争比赛,一决高下,男女朋友之间适合双人协作模式,共同完成游戏. A:双人竞争模式为双人同起点或不同起点来进行游戏,在竞争的紧张压力 ...
- eclipse异常关闭,而Tomcat然在运行解决方法
1.eclipse异常关闭,而Tomcat然在运行,再启动tomcat会出现端口冲突 解决方法:打开任务管理器,找到javaw.exe,点击关闭,就可以了
- Leetcode题库——35.搜索插入位置
@author: ZZQ @software: PyCharm @file: searchInsert.py @time: 2018/11/07 19:20 要求:给定一个排序数组和一个目标值,在数组 ...
- HDU 4568 Hunter 最短路+TSP
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 Hunter Time Limit: 2000/1000 MS (Java/Others)Me ...