hdu5391-Zball in Tina Town-威尔逊定理(假证明)
Tina has a ball called zball. Zball is magic. It grows larger every day. On the first day, it becomes 11 time as large as its original size. On the second day,it will become 22 times as large as the size on the first day. On the n-th day,it will become nn times as large as the size on the (n-1)-th day. Tina want to know its size on the (n-1)-th day modulo n.
InputThe first line of input contains an integer TT, representing the number of cases.
The following TT lines, each line contains an integer nn, according to the description.
T≤105,2≤n≤109T≤105,2≤n≤109
OutputFor each test case, output an integer representing the answer.Sample Input
2
3
10
Sample Output
2
0 翻译:求(n-1)!%n
前置技能:威尔逊定理
威尔逊定理概念:当且仅当p为素数,(p-1)! ≡ -1 (mod p) → (p-1)!+1 = 0 (mod p)
网上关于定理的证明,什么缩系,死都看不懂,只好记住公式,举举例子说服自己这定理是真的。
1.当p为合数时,(p-1)! %p = 0。假设p=a*b,(p-1)! = 1*2*3*4*...*(p-1),其中有两个数是a和b,则(p-1)!%(a*b)=0;
多出一个1的时候,没办法被p整除。
2.当p为素数时,假设p=7,(p-1) != 1*2*3*4*5*6,关于大家所说的2到p-2这些数两两配对,2和4配对,8%7=1;3和5配对,
15%7=1;配对后模p结果为1,最后一个数模p结果为p-1由同余定理可知再补一个1就可以被p整除
再举例p=11,(p-1)! = 1*2*3*4*5*6*7*8*9*10,两两配对,2*6%11=1; 3*4%11=1; 5*9%11=1; 7*8%11=1; 1*10%11=10;
显然10!再加1就可以被11整除。
3.特例:p=4时,3! = 1*2*3 = 6; 6%4=2, 虽然p是合数,但(p-1)%p !=0
#include <iostream>
#include<stdio.h>
#include <algorithm>
#include<string.h>
#include<cstring>
#include<math.h>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std; bool flag(int x)
{
int q=sqrt(x);
for(int i=;i<=q;i++)
{
if(x%i==)
return false;
}
return true;
} int main()///hdu5391,威尔逊定理
{
int t;
int n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
if(n==)
printf("2\n");
else if(flag(n))
printf("%d\n",n-);
else printf("0\n");
}
return ;
}
hdu5391-Zball in Tina Town-威尔逊定理(假证明)的更多相关文章
- hdu5391 Zball in Tina Town(威尔逊定理)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Zball in Tina Town Time Limit: 3000/1500 ...
- hdu 5391 Zball in Tina Town 威尔逊定理 数学
Zball in Tina Town Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Oth ...
- HDU-5391 Zball in Tina Town
(n-1)!/n 就是如果n为素数,就等于n-1else为0. 求素数表: Zball in Tina Town Time Limit: 3000/1500 MS (Java/Others) Memo ...
- hdu5391 Zball in Tina Town
Problem Description Tina Town is a friendly place. People there care about each other. Tina has a ba ...
- HDU 5391 Zball in Tina Town【威尔逊定理】
<题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...
- C#版 - HDUoj 5391 - Zball in Tina Town(素数) - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. HDUoj 5 ...
- 判素数+找规律 BestCoder Round #51 (div.2) 1001 Zball in Tina Town
题目传送门 /* 题意: 求(n-1)! mod n 数论:没啥意思,打个表能发现规律,但坑点是4时要特判! */ /***************************************** ...
- BC - Zball in Tina Town (质数 + 找规律)
Zball in Tina Town Accepts: 541 Submissions: 2463 Time Limit: 3000/1500 MS (Java/Others) Memory ...
- Zball in Tina Town
Zball in Tina Town Accepts: 356 Submissions: 2463 Time Limit: 3000/1500 MS (Java/Others) Memory ...
- 【HDU5391】Zball in Tina Town
[题目大意] 一个球初始体积为1,一天天变大,第一天变大1倍,第二天变大2倍,第n天变大n倍.问当第 n-1天的时候,体积变为多少.注意答案对n取模. [题解] 根据威尔逊定理:(n-1)! mod ...
随机推荐
- python 中logging模块
logging的作用:python中,logging模块主要是处理日志的.所谓日志,可理解为在软件运行过程中,所记录的的一些运行情况信息,软件开发人员可以根据自己的需求添加日志,日志可以帮助软件开发人 ...
- gulp安装,淘宝镜像
命令:express -e ./ express表示安装express -e表示使用ejs作为模板 ./表示当前目录中 (使用上面的命令之前我们应该使用npm安装express框架 sudo npm ...
- underscore函数存在两种用法
var _ = require('underscore'); var a = {"a": 1, "b": 2}; console.log(_(a).size() ...
- JVM总结-异常处理
众所周知,异常处理的两大组成要素是抛出异常和捕获异常.这两大要素共同实现程序控制流的非正常转移. 抛出异常可分为显式和隐式两种.显式抛异常的主体是应用程序,它指的是在程序中使用“throw”关键字,手 ...
- 【Selenium-WebDriver自学】Selenium-IDE验证点(五)
==================================================================================================== ...
- 《算法》第五章部分程序 part 2
▶ 书中第五章部分程序,包括在加上自己补充的代码,字符串高位优先排序(计数 + 插排),(原地排序),(三路快排,与前面的三路归并排序相同) ● 计数 + 插排 package package01; ...
- 读取文件 读取项目里面的json
ClassPathResource resource = new ClassPathResource("properties/post2LazadaTest.json"); Fil ...
- C++中多态中构造函数与析构函数的调用
做个实验,看一下成员变量的构造析构,父类子类的构造析构,以及虚函数对调用的影响. #include <iostream> using namespace std; class Member ...
- des加密delphi与c#
des加密delphi与c# C#默认是CBC,PKCS7
- 快速掌握和使用Flyway
什么是Flyway? 转载:https://blog.waterstrong.me/flyway-in-practice/ Flyway is an open-source database migr ...