Chapter5  HOW DO WE COMPARE DNA SEQUENCES 

Bioinformatics Algorithms-An_Active Learning Approach

http://bioinformaticsalgorithms.com/

 
一、
1983年,Russell Doolitte 将血小板源生长因子[platelet derived growth factor(PDGF),一种刺激细胞增殖的物质]和其它已知基因比对,发现它的序列和原癌基因(oncogene)的序列有很高的相似度。这让科学家猜测某些癌症是因为基因在不合适的时机作用所致(scientists hypothesized that some forms of cancer might be caused by a good gene doing the right thing at the wrong time.)。
二、提出问题 序列比对:动态规划法
 
1.全局比对:
 

 '''
Code Challenge: Solve the Global Alignment Problem.
Input: Two protein strings written in the single-letter amino acid alphabet.
Output: The maximum alignment score of these strings followed by an alignment achieving this maximum score. Use the
BLOSUM62 scoring matrix for matches and mismatches as well as the indel penalty σ = 5.
----------
Sample Input:
PLEASANTLY
MEANLY
----------
Sample Output:
8
PLEASANTLY
-MEA--N-LY
----------
@ Lo Kowngho 2018.9
'''
import numpy
from os.path import dirname def Grade(Symb1,Symb2):
Indx1 = symbolList[Symb1]
Indx2 = symbolList[Symb2]
return matrix[Indx1][Indx2] def Init_Graph_Global(l1,l2):
Graph = numpy.zeros([l2,l1])
for x in range(1,l2):
Graph[x][0] = Graph[x-1][0]-5
for y in range(1,l1):
Graph[0][y] = Graph[0][y-1]-5
return Graph def Init_Path(l1,l2):
Path = numpy.zeros([l2,l1])
for x in range(1,l2):
Path[x][0] = 1
for y in range(1,l1):
Path[0][y] = 2
return Path def buildGlobalAlignmentGraph(text1,text2): l1 = len(text1)
l2 = len(text2)
Graph = Init_Graph_Global(l1, l2)
Path = Init_Path(l1, l2) for x in range(1,l2):
for y in range(1,l1):
Graph[x][y] = max(Graph[x-1][y]-5, Graph[x][y-1]-5, Graph[x-1][y-1]+Grade(text1[y],text2[x]))
if Graph[x-1][y]-5==Graph[x][y]:
Path[x][y]=1
elif Graph[x][y-1]-5==Graph[x][y]:
Path[x][y]=2
else:
Path[x][y]=3
return [Graph,Path] def OutputGlobalAligement(Path,Graph,text1,text2):
outT1 = ''
outT2 = ''
l1 = len(text1)
l2 = len(text2)
x = l2-1
y = l1-1
while(x!=0 or y!=0):
if Path[x][y]==1:
outT1 += '-'
outT2 += text2[x]
x -= 1
elif Path[x][y]==2:
outT1 += text1[y]
outT2 += '-'
y -= 1
else:
outT1 += text1[y]
outT2 += text2[x]
x -= 1
y -= 1
return [outT1[::-1],outT2[::-1]] def ImportScoreMatrix():
dataset = open(dirname(__file__)+'BLOSUM62.txt').read().strip().split('\n')
symbolList = dataset[0].split()
for i in range(len(symbolList)):
symbolList[i]=[symbolList[i],i]
symbolList = dict(symbolList)
print(symbolList)
matrix = []
for i in range(1,len(dataset)):
matrix.append(dataset[i].split()[1:])
for l in range(len(matrix)):
for i in range(len(matrix[l])):
matrix[l][i]=int(matrix[l][i])
return [matrix,symbolList] if __name__ == '__main__': [matrix,symbolList] = ImportScoreMatrix() dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
text1 = ''+dataset[0]
text2 = ''+dataset[1] [Graph,Path] = buildGlobalAlignmentGraph(text1, text2) [outT1,outT2] = OutputGlobalAligement(Path,Graph,text1,text2) print(int(Graph[-1][-1]))
print(outT1)
print(outT2)

全局比对 python

 
2. 局部比对
可以把局部比对想象成下面的Free Taxi场景,在开始和结尾都不受罚分约束,只在中间的某一过程受罚分约束。
              
在全局比对的基础上,状态转移方程在加上一个0,表示每一个点,既可以由→、↓、↘经过罚分得到,也可以直接由起点,不经罚分得到(Free Taxi)。

 '''
Code Challenge: Solve the Local Alignment Problem.
Input: Two protein strings written in the single-letter amino acid alphabet.
Output: The maximum score of a local alignment of the strings, followed by a local alignment of these strings achieving the maximum
score. Use the PAM250 scoring matrix for matches and mismatches as well as the indel penalty σ = 5.
---------------
Sample Input:
MEANLY
PENALTY
---------------
Sample Output:
15
EANL-Y
ENALTY
---------------
Lo Kwongho 2018.9
'''
import numpy
from os.path import dirname def Grade(Symb1,Symb2):
Indx1 = symbolList[Symb1]
Indx2 = symbolList[Symb2]
return matrix[Indx1][Indx2] def Init_Graph_Local(l1,l2):
Graph = numpy.zeros([l1,l2])
return Graph def Init_Path(l1,l2):
Path = numpy.ones([l1,l2])*-1
for x in range(1,l1):
Path[x][0] = 1
for y in range(1,l2):
Path[0][y] = 2
return Path def buildLocalAlignmentGraph(text1,text2):
l1 = len(text1)
l2 = len(text2)
Graph = Init_Graph_Local(l1, l2)
Path = Init_Path(l1, l2) for x in range(1,l1):
for y in range(1,l2):
Graph[x][y] = max(Graph[x-1][y]-5, Graph[x][y-1]-5, Graph[x-1][y-1]+Grade(text1[x],text2[y]),0)
if Graph[x-1][y]-5 == Graph[x][y]:
Path[x][y] = 1
elif Graph[x][y-1]-5==Graph[x][y]:
Path[x][y] = 2
elif Graph[x][y] == 0:
Path[x][y] = 0
else:
Path[x][y] = 3
maxVal = 0
maxIndx = [-1,-1]
for x in range(1,l1):
for y in range(1,l2):
if Graph[x][y]>maxVal:
maxVal=Graph[x][y]
maxIndx=[x,y] return [Graph,Path,maxIndx] def OutputLocalAligement(Path,Graph,text1,text2,maxIndx):
outT1 = ''
outT2 = ''
l1 = len(text1)
l2 = len(text2)
x = maxIndx[0]
y = maxIndx[1]
while(x!=0 or y!=0):
if Path[x][y]==1:
outT1 += text1[x]
outT2 += '-'
x -= 1
elif Path[x][y]==2:
outT1 += '-'
outT2 += text2[y]
y -= 1
elif Path[x][y]==3:
outT1 += text1[x]
outT2 += text2[y]
x -= 1
y -= 1
else:
x=0
y=0
return [outT1[::-1],outT2[::-1]] def ImportScoreMatrix():
dataset = open(dirname(__file__)+'PAM250.txt').read().strip().split('\n')
symbolList = dataset[0].split()
for i in range(len(symbolList)):
symbolList[i]=[symbolList[i],i]
symbolList = dict(symbolList)
matrix = []
for i in range(1,len(dataset)):
matrix.append(dataset[i].split()[1:])
for l in range(len(matrix)):
for i in range(len(matrix[l])):
matrix[l][i]=int(matrix[l][i])
return [matrix,symbolList] if __name__ == '__main__':
[matrix,symbolList] = ImportScoreMatrix() dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
text1 = ''+dataset[0]
text2 = ''+dataset[1] [Graph,Path,maxIndx] = buildLocalAlignmentGraph(text1,text2) [outT1,outT2]=OutputLocalAligement(Path,Graph,text1,text2,maxIndx)
print(int(Graph[maxIndx[0]][maxIndx[1]]))
print(outT1)
print(outT2)

局部比对 Python

3. Overlarp Alignment

 '''
Code Challenge: Solve the Overlap Alignment Problem.
>>Input: Two strings v and w, each of length at most 1000.
>>Output: The score of an optimal overlap alignment of v and w, followed by an alignment of a suffix v' of v and a prefix w' of w.
achieving this maximum score. Use an alignment score in which matches count +1 and both the mismatch and indel penalties are 2.
-------------------
Sample Input:
PAWHEAE
HEAGAWGHEE
-------------------
Sample Output:
1
HEAE
HEAG
-------------------
coder: Lo Kwongho
''' import numpy
from os.path import dirname def Init_Graph_Overlap(l1,l2):
Graph = numpy.zeros([l1,l2])
for y in range(1,l2):
Graph[0][y] = Graph[0][y-1]-1
return Graph def Init_Path(l1,l2):
Path = numpy.ones([l1,l2])*-1
for x in range(1,l1):
Path[x][0] = 1
for y in range(1,l2):
Path[0][y] = 2
return Path def buildOverlapAlignmentGraph(text1,text2):
l1 = len(text1)
l2 = len(text2)
Graph = Init_Graph_Overlap(l1, l2)
Path = Init_Path(l1,l2)
for x in range(1,l1):
for y in range(1,l2):
if text1[x]==text2[y]:
Graph[x][y]=max(Graph[x-1][y-1]+1,Graph[x-1][y]-2,Graph[x][y-1]-2)
else:
Graph[x][y]=max(Graph[x-1][y-1]-2,Graph[x-1][y]-2,Graph[x][y-1]-2)
if Graph[x][y]==Graph[x-1][y]-2:
Path[x][y]=1
elif Graph[x][y]==Graph[x][y-1]-2:
Path[x][y]=2
else:
Path[x][y]=3 maxVal = 0
maxIndx = -1
for i in range(l2):
if Graph[l1-1][i]>maxVal:
maxVal=Graph[l1-1][i]
maxIndx=i return [Graph,Path,maxIndx,maxVal] def OutputOverlapAligement(Path,Graph,text1,text2,maxIndx):
outT1 = ''
outT2 = ''
l1 = len(text1)
l2 = len(text2)
x = l1-1
y = maxIndx
while(y!=0):
if Path[x][y]==1:
outT1 += text1[x]
outT2 += '-'
x -= 1
elif Path[x][y]==2:
outT1 += '-'
outT2 += text2[y]
y -= 1
elif Path[x][y]==3:
outT1 += text1[x]
outT2 += text2[y]
x -= 1
y -= 1
else:
x=0
y=0
return [outT1[::-1],outT2[::-1]] if __name__ == '__main__':
dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
text1 = ''+dataset[0]
text2 = ''+dataset[1]
l1 = len(text1)
l2 = len(text2)
[Graph,Path,maxIndx,maxVal] = buildOverlapAlignmentGraph(text1,text2)
#print(Graph) [outText1,outText2]=OutputOverlapAligement(Path, Graph, text1, text2, maxIndx) print(int(maxVal))
print(outText1)
print(outText2)

Overlarp in python

4.Fitting Alignment 

 '''
Fitting Alignment Problem: Construct a highest-scoring fitting alignment between two strings.
>>Input: Strings v and w as well as a matrix Score.
>>Output: A highest-scoring fitting alignment of v and w as defined by the scoring matrix Score.
-------------------
Sample Input:
GTAGGCTTAAGGTTA
TAGATA
-------------------
Sample Output:
2
TAGGCTTA
TAGA--TA
-------------------
coder: Lo Kwongho
''' import numpy
from os.path import dirname def Init_Graph_Fiting(l1,l2):
Graph = numpy.zeros([l1,l2])
for y in range(1,l2):
Graph[0][y] = Graph[0][y-1]-1
return Graph def Init_Path(l1,l2):
Path = numpy.ones([l1,l2])*-1
for x in range(1,l1):
Path[x][0] = 1
for y in range(1,l2):
Path[0][y] = 2
return Path def buildFittingAlignmentGraph(text1,text2):
l1 = len(text1)
l2 = len(text2)
Graph = Init_Graph_Fiting(l1, l2)
Path = Init_Path(l1,l2)
for x in range(1,l1):
for y in range(1,l2):
if text1[x]==text2[y]:
Graph[x][y]=max(Graph[x-1][y-1]+1,Graph[x-1][y]-1,Graph[x][y-1]-1)
else:
Graph[x][y]=max(Graph[x-1][y-1]-1,Graph[x-1][y]-1,Graph[x][y-1]-1)
if Graph[x][y]==Graph[x-1][y]-1:
Path[x][y]=1
elif Graph[x][y]==Graph[x][y-1]-1:
Path[x][y]=2
else:
Path[x][y]=3 maxVal = 0
maxIndx = -1
for i in range(l1):
if Graph[i][l2-1]>maxVal:
maxVal=Graph[i][l2-1]
maxIndx=i return [Graph,Path,maxIndx,maxVal] def OutputFittingAligement(Path,Graph,text1,text2,maxIndx):
outT1 = ''
outT2 = ''
l1 = len(text1)
l2 = len(text2)
x = maxIndx
y = l2-1
while(y!=0):
if Path[x][y]==1:
outT1 += text1[x]
outT2 += '-'
x -= 1
elif Path[x][y]==2:
outT1 += '-'
outT2 += text2[y]
y -= 1
elif Path[x][y]==3:
outT1 += text1[x]
outT2 += text2[y]
x -= 1
y -= 1
else:
x=0
y=0
return [outT1[::-1],outT2[::-1]] if __name__ == '__main__':
dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
text1 = ''+dataset[0]
text2 = ''+dataset[1]
l1 = len(text1)
l2 = len(text2)
[Graph,Path,maxIndx,maxVal] = buildFittingAlignmentGraph(text1,text2) [outText1,outText2]=OutputFittingAligement(Path, Graph, text1, text2, maxIndx)
#print(Graph)
print(int(maxVal))
print(outText1)
print(outText2)

Fitting Alignment in python

这四种比对的关系如图:
 
全局比对                    局部比对
Overlarp Alignment                 Fitting Alignment
5、基因的插入和删除,通常都是连续的一段,故在比对出现的连续空位,应该把它们当作一个整体看待。在比对的空位罚分中,生物学家认为,在每一条链上新开一个空位,应罚重分,而空位的延续,罚分应较少:
解决问题的方法是:开三个矩阵,每个矩阵代表一种方向。在→、↓方向上行走,代表产生空位。故每当从↘转移到→、↓,或者→、↓间转移,代表在某链上产生新空位,重罚,而在→、↓内转移,代表空位延续,轻罚。
 
                     

 '''
Code Challenge: Solve the Alignment with Affine Gap Penalties Problem.
>>Input: Two amino acid strings v and w (each of length at most 100).
>>Output: The maximum alignment score between v and w, followed by an alignment of v and w achieving this maximum score. Use the
BLOSUM62 scoring matrix, a gap opening penalty of 11, and a gap extension penalty of 1.
---------------------
Sample Input:
PRTEINS
PRTWPSEIN
---------------------
Sample Output:
8
PRT---EINS
PRTWPSEIN-
---------------------
coder: Lo Kwongho
'''
import numpy
from os.path import dirname
negINFINITY = -999
#Penalties
gs = -10 #gap_Start
ge = -1 #gap_Extend
#
def Grade(Symb1,Symb2):
Indx1 = symbolList[Symb1]
Indx2 = symbolList[Symb2]
return matrix[Indx1][Indx2] def initGraph(l1,l2):
Graph = [numpy.zeros([l1,l2] ,dtype=int) for i in range(3)] Graph[1][0][0] = negINFINITY
Graph[2][0][0] = negINFINITY
for x in range(1,l1):
Graph[0][x][0]=negINFINITY
if x==1:
Graph[1][x][0]=ge+gs
else:
Graph[1][x][0]=Graph[1][x-1][0]+ge
Graph[2][x][0]=negINFINITY
for y in range(1,l2):
Graph[0][0][y]=negINFINITY
if y ==1:
Graph[2][0][y]=ge+gs
else:
Graph[2][0][y]=Graph[2][0][y-1]+ge
Graph[1][0][y]=negINFINITY
return Graph def Init_Path(l1,l2):
Path = [numpy.ones([l1,l2])*-1 for i in range(3)]
'''for x in range(1,l1):
Path[x][0] = 1
for y in range(1,l2):
Path[0][y] = 2'''
return Path def buildAlignmentGraph(text1,text2,l1,l2): Graph = initGraph(l1,l2)
#Path = #Init_Path(l1,l2)
for x in range(1,l1):
for y in range(1,l2):
# X ######
Graph[1][x][y]=max(gs+ge+Graph[0][x-1][y],gs+ge+Graph[2][x-1][y],ge+Graph[1][x-1][y]) # Y ######
Graph[2][x][y]=max(gs+ge+Graph[0][x][y-1],gs+ge+Graph[1][x][y-1],ge+Graph[2][x][y-1]) # M ######
Graph[0][x][y]=Grade(text1[x], text2[y])+max(Graph[0][x-1][y-1],Graph[1][x-1][y-1],Graph[2][x-1][y-1]) maxVal = 0
maxIndx = -1
for i in range(3):
if Graph[i][l1-1][l2-1]>maxVal:
maxVal=Graph[i][l1-1][l2-1]
maxIndx=i
return [Graph,maxIndx,maxVal] def trackBack(Graph,maxIndx,text1,text2):
x = len(text1)-1
y = len(text2)-1
otext1 = ''
otext2 = ''
Indx = maxIndx
while(1):
if Indx==0:
otext1 += text1[x]
otext2 += text2[y]
if x ==1:
break
if Graph[0][x][y]==Graph[1][x-1][y-1]+Grade(text1[x], text2[y]):
Indx = 1
elif Graph[0][x][y]==Graph[2][x-1][y-1]+Grade(text1[x], text2[y]):
Indx = 2
else:
Indx = 0
x -= 1
y -= 1
elif Indx==1:
otext1 += text1[x]
otext2 += '-'
if x == 1:
break
if Graph[1][x][y]==Graph[0][x-1][y]+ge+gs:
Indx = 0
elif Graph[1][x][y]==Graph[2][x-1][y]+ge+gs:
Indx = 2
else:
Indx = 1
x -= 1
else:
otext1 += '-'
otext2 += text2[y]
if y == 1:
break
if Graph[2][x][y]==Graph[0][x][y-1]+ge+gs:
Indx = 0
elif Graph[2][x][y]==Graph[1][x][y-1]+ge+gs:
Indx = 1
else:
Indx = 2
y -= 1 return [otext1[::-1],otext2[::-1]] def ImportScoreMatrix():
dataset = open(dirname(__file__)+'BLOSUM62.txt').read().strip().split('\n')
symbolList = dataset[0].split()
for i in range(len(symbolList)):
symbolList[i]=[symbolList[i],i]
symbolList = dict(symbolList)
matrix = []
for i in range(1,len(dataset)):
matrix.append(dataset[i].split()[1:])
for l in range(len(matrix)):
for i in range(len(matrix[l])):
matrix[l][i]=int(matrix[l][i])
return [matrix,symbolList] if __name__ == '__main__':
[matrix,symbolList] = ImportScoreMatrix() # 打分矩阵 dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
text1 = ''+dataset[0]
text2 = ''+dataset[1]
l1 = len(text1)
l2 = len(text2)
[Graph,maxIndx,maxVal] = buildAlignmentGraph(text1, text2, l1, l2)
#print(Graph) [output_text1,output_text2] = trackBack(Graph,maxIndx,text1,text2)
print(maxVal)
print(output_text1)
print(output_text2)

Alignment with Affine Gap Penalties

6 * 一种线性空间的比对方法 Space-Efficient Sequence Alignment(分治+动态规划)
https://www.cs.rit.edu/~rlaz/algorithms20082/slides/SpaceEfficientAlignment.pdf

 '''
Code Challenge: Implement LinearSpaceAlignment to solve the Global Alignment Problem for a large dataset.
>>>Input: Two long (10000 amino acid) protein strings written in the single-letter amino acid alphabet.
>>>Output: The maximum alignment score of these strings, followed by an alignment achieving this maximum score. Use the BLOSUM62 scoring matrix and indel penalty σ = 5.
------------
Sample Input:
PLEASANTLY
MEANLY
------------
Sample Output:
8
PLEASANTLY
-MEA--N-LY
------------
coder: Lo Kwongho in 2018.9
'''
from os.path import dirname
import numpy
#
indel = -5
negINF = -9999
#
#
def Grade(Symb1,Symb2):
Indx1 = symbolList[Symb1]
Indx2 = symbolList[Symb2]
return matrix[Indx1][Indx2] def ImportScoreMatrix():
dataset = open(dirname(__file__)+'BLOSUM62.txt').read().strip().split('\n')
symbolList = dataset[0].split()
for i in range(len(symbolList)):
symbolList[i]=[symbolList[i],i]
symbolList = dict(symbolList)
matrix = []
for i in range(1,len(dataset)):
matrix.append(dataset[i].split()[1:])
for l in range(len(matrix)):
for i in range(len(matrix[l])):
matrix[l][i]=int(matrix[l][i])
return [matrix,symbolList]
#
def half_Alignment(v,w):
nv = len(v)
mw = len(w)
s = numpy.zeros(shape=(nv+1,2),dtype=int)
for i in range(nv+1):
s[i,0] = indel*i
if mw==0:
return s[:,0] #
for j in range(mw):
s[0,1]=s[0,0]+indel
for i in range(nv):
s[i+1,1]=max(s[i,1]+indel,s[i+1,0]+indel,s[i,0]+Grade(w[j],v[i]))
s[:,0]=s[:,1]
return s[:,1] def midEdge(v,w):
nv = len(v)
mw = len(w)
mid = int((mw-1)/2)
wl = w[:mid]
wr = w[mid+1:]
pre = half_Alignment(v,wl)
suf = half_Alignment(v[::-1],wr[::-1])[::-1]
hs = [pre[i]+suf[i]+indel for i in range(nv+1)]
ds = [pre[i]+suf[i+1]+Grade(w[mid],v[i]) for i in range(nv)]
maxhs = max(hs)
maxds = max(ds)
if maxhs>maxds:
return ( (hs.index(maxhs),mid) ,(hs.index(maxhs),mid+1) )
else:
return ( (ds.index(maxds),mid) ,(ds.index(maxds)+1,mid+1) ) def build_Alignment_track(v,w):
vn = len(v)
wm = len(w)
if vn==0 and wm==0:
return []
elif vn==0:
return ['-']*wm
elif wm==0:
return ['|']*vn
((x1,y1),(x2,y2)) = midEdge(v,w)
if x1==x2:
edge = ['-']
else:
edge = ['\\']
wleft = w[:y1]
wright = w[y2:]
vupper = v[:x1]
vbotm = v[x2:] upper_left_track = build_Alignment_track(vupper,wleft)
bottom_right_track = build_Alignment_track(vbotm,wright)
return upper_left_track+edge+bottom_right_track def trackToString(v,w,track):
vi = 0
wj = 0
outv = ''
outw = ''
score = 0
for i in track:
if i == '|':
outv += v[vi]
outw += '-'
score += indel
vi += 1
elif i == '-':
outv += '-'
outw += w[wj]
score += indel
wj += 1
else:
outv += v[vi]
outw += w[wj]
score += Grade(v[vi], w[wj])
vi += 1
wj += 1 return [score,outv,outw] def LinearSpaceAlignment(v,w):
track = build_Alignment_track(v,w)
[score,outv, outw] = trackToString(v,w,track)
print(score)
print(outv)
print(outw) if __name__ == '__main__':
dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
[matrix,symbolList] = ImportScoreMatrix()
v = dataset[0]
w = dataset[1]
LinearSpaceAlignment(v,w)

Linear-Space Alignment

读书笔记 Bioinformatics Algorithms Chapter5的更多相关文章

  1. 笔记 Bioinformatics Algorithms Chapter7

    一.Lloyd算法 算法1 Lloyd Algorithm k_mean clustering * Centers to Clusters: After centers have been selec ...

  2. 笔记 Bioinformatics Algorithms Chapter2

    Chapter2 WHICH DNA PATTERNS PLAY THE ROLE OF MOLECULAR CLOCKS 寻找模序 一. 转录因子会结合基因上游的特定序列,调控基因的转录表达,但是在 ...

  3. 笔记 Bioinformatics Algorithms Chapter1

    Chapter1 WHERE IN THE GENOME DOES DNA REPLICATION BEGIN    一. ·聚合酶启动结构域会结合上游序列的一些位点,这些位点有多个,且特异,并且分布 ...

  4. 读书笔记-Coding faster(英文版)

    读书笔记-Coding faster(英文版) Getting More Productive with Microsoft visual Studio Author: Zain Naboulsi S ...

  5. 读书笔记-实用单元测试(英文版) Pragmatic Unit Testing in C# with NUnit

    读书笔记-实用单元测试(英文版) Pragmatic Unit Testing in C# with NUnit Author: Andrew Hunt ,David Thomas with Matt ...

  6. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  7. 【读书笔记】《Computer Organization and Design: The Hardware/Software Interface》(1)

    笔记前言: <Computer Organization and Design: The Hardware/Software Interface>,中文译名,<计算机组成与设计:硬件 ...

  8. The Pragmatic Programmer 读书笔记之中的一个 DRY-Don’t Repeat Youself

     The Pragmatic Programmer读书笔记之中的一个 DRY-Don't Repeat Youself 尽管自己买了非常多软件project方面的书,可是由于时间的问题.一直没有静 ...

  9. 《Unix编程艺术》读书笔记(1)

    <Unix编程艺术>读书笔记(1) 这两天開始阅读该书,以下是自己的体会,以及原文的摘录,尽管有些东西还无法全然吃透. 写优雅的代码来提高软件系统的透明性:(P134) Elegance ...

随机推荐

  1. 克隆后没有IP

    删除文件:  /etc/udev/rules.d/70-persistent-net.rules 将/etc/sysconfig/network-scripts/ifcfg-eth0 中的HWADDR ...

  2. 亚像素Sub Pixel

    亚像素Sub Pixel 评估图像处理算法时,通常会考虑是否具有亚像素精度. 亚像素概念的引出: 图像处理过程中,提高检测方法的精度一般有两种方式:一种是提高图像系统的光学放大倍数和CCD相机的分辨率 ...

  3. EntityFramework的linq扩展where

    代码 using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; ...

  4. Windows服务安装、卸载、启动和关闭的管理器

    最近在重构公司的系统,把一些需要独立执行.并不需要人为关注的组件转换为Windows服务,Windows服务在使用的过程中有很多好处,相信这一点,就不用我多说了.但是每次都要建立Windows服务项目 ...

  5. Cookie 和 Session 的区别和联系?session的生命周期?多个服务器部署session的管理?

    一.session 和 cookie 1.cookie Cookie会根据响应报文里的一个叫做Set-Cookie的首部字段信息,通知客户端保存Cookie.当下次客户端再向服务端发起请求时,客户端会 ...

  6. Java的OOP三大特征之一——继承

    Java的OOP三大特征之一——继承 子类继承父类的特征和行为(属性和方法),使得子类具有父类的各种属性和方法.或子类从父类继承方法,使得子类具有父类相同的行为. 特点:在继承关系中,父类更通用.子类 ...

  7. VirtualBox中安装Fedora9及其ARM开发环境配置

    因为要学习Tiny4412开发板的嵌入式编程,需要用到Fedora9系统(和手册对应),我就在VirtualBox虚拟机(此虚拟机安装在Ubuntu12.04上)上安装了Fedora9,下面就讲解一下 ...

  8. lazarus的动态方法和虚拟方法

    动态方法和虚拟方法在delphi里面分别表示: 动态方法 当需要调用父类.祖先类的被覆盖方法的时候,是查找继承树,当找到,就调用.减少了VMT占用,但调用慢一些. 虚拟方法 和动态方法不同的是,记录了 ...

  9. libpcap 库使用(三)

    1.为了使收到的报文尽快给我们的处理程序,需要设置成immediate模式: int pcap_set_immediate_mode(pcap_t *p, int immediate_mode);

  10. Python压缩文件夹 tar.gz .zip

    打包压缩生成 XXX.tar.gz 文件 import os import tarfile if os.path.exists(outputFileName): with tarfile.open(o ...