动态dp

瞎扯两句吧

先从序列上理解,维护链的最大独立集。

考虑是从左边转移的,那么矩阵的转移唯一,直接放在线段树上就可以了。

放在树上的话,儿子都可以转移,把轻儿子的转移放在子链链头更新,然后每条链都处理成序列就行了。

注意一点,因为维护的是序列,所以单点存放的矩阵是只含轻儿子和自己的贡献,相当于把轻儿子的子树缩给了自己,而重儿子维护的东西是通过线段树上维护的区间贡献过来的。


咕咕模板,最大全独立集

Code:

#include <cstdio>
#include <algorithm>
#include <cctype>
using std::max;
const int N=1e5+10;
const int inf=0x3f3f3f3f;
int n,m,v[N];
int read()
{
int x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) {x=x*10+c-'0';c=getchar();}
return x*f;
}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int dfn[N],top[N],bot[N],siz[N],ha[N],f[N],ws[N],dfsclock,dp[N][2],len;
void dfs1(int now)
{
++siz[now],dp[now][1]=v[now];
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=f[now])
{
f[v]=now,dfs1(v),siz[now]+=siz[v];
dp[now][1]+=dp[v][0];
dp[now][0]+=max(dp[v][0],dp[v][1]);
if(siz[v]>siz[ws[now]]) ws[now]=v;
}
}
void dfs2(int now,int anc)
{
ha[dfn[now]=++dfsclock]=now;
bot[top[now]=anc]=now;
if(ws[now]) dfs2(ws[now],anc);
for(int v,i=head[now];i;i=Next[i])
if(!dfn[v=to[i]])
dfs2(v,v);
bot[now]=bot[anc];
}
struct matrix{int dx[2][2];}mx[N<<2],upt[N];
matrix operator *(matrix a,matrix b)
{
matrix ret;
ret.dx[0][0]=max(a.dx[0][0]+b.dx[0][0],a.dx[0][1]+b.dx[1][0]);
ret.dx[0][1]=max(a.dx[0][0]+b.dx[0][1],a.dx[0][1]+b.dx[1][1]);
ret.dx[1][0]=max(a.dx[1][0]+b.dx[0][0],a.dx[1][1]+b.dx[1][0]);
ret.dx[1][1]=max(a.dx[1][0]+b.dx[0][1],a.dx[1][1]+b.dx[1][1]);
return ret;
}
#define ls id<<1
#define rs id<<1|1
void build(int id,int l,int r)
{
if(l==r)
{
int now=ha[l],g0=0,g1=v[now];
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=ws[now]&&v!=f[now])
g0+=max(dp[v][0],dp[v][1]),g1+=dp[v][0];
upt[l]=mx[id]=(matrix){g0,g0,g1,-inf};
return;
}
int mid=l+r>>1;
build(ls,l,mid),build(rs,mid+1,r);
mx[id]=mx[ls]*mx[rs];
}
matrix query(int id,int L,int R,int l,int r)
{
if(l==L&&r==R) return mx[id];
int Mid=L+R>>1;
if(r<=Mid) return query(ls,L,Mid,l,r);
else if(l>Mid) return query(rs,Mid+1,R,l,r);
else return query(ls,L,Mid,l,Mid)*query(rs,Mid+1,R,Mid+1,r);
}
void change(int id,int l,int r,int p)
{
if(l==r) {mx[id]=upt[l];return;}
int mid=l+r>>1;
if(p<=mid) change(ls,l,mid,p);
else change(rs,mid+1,r,p);
mx[id]=mx[ls]*mx[rs];
}
void modify(int now,int w)
{
upt[dfn[now]].dx[1][0]+=w-v[now],v[now]=w;
while(233)
{
matrix a=query(1,1,n,dfn[top[now]],dfn[bot[now]]);
change(1,1,n,dfn[now]);
matrix b=query(1,1,n,dfn[top[now]],dfn[bot[now]]);
now=f[top[now]];
if(!now) break;
upt[dfn[now]].dx[0][0]+=max(b.dx[0][0],b.dx[1][0])-max(a.dx[0][0],a.dx[1][0]);
upt[dfn[now]].dx[0][1]=upt[dfn[now]].dx[0][0];
upt[dfn[now]].dx[1][0]+=b.dx[0][0]-a.dx[0][0];
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++) v[i]=read();
for(int u,v,i=1;i<n;i++) u=read(),v=read(),add(u,v),add(v,u);
dfs1(1),dfs2(1,1),build(1,1,n);
for(int u,w,i=1;i<=m;i++)
{
u=read(),w=read();
modify(u,w);
matrix ans=query(1,1,n,1,dfn[bot[1]]);
printf("%d\n",max(ans.dx[0][0],ans.dx[1][0]));
}
return 0;
}

2019.1.2

动态dp 板子的更多相关文章

  1. 洛谷P4719 【模板】动态dp(ddp LCT)

    题意 题目链接 Sol 动态dp板子题.有些细节还没搞懂,待我研究明白后再补题解... #include<bits/stdc++.h> #define LL long long using ...

  2. P4719 【模板】"动态 DP"&动态树分治

    题目描述 给定一棵 n 个点的树,点带点权. 有 m 次操作,每次操作给定 x,y,表示修改点 x 的权值为 y. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入格式 第一行有两个整数 ...

  3. 【模板】动态 DP

    luogu传送门. 最近学了一下动态dp,感觉没有想象的难. 动态DP simple的DP是这样的: 给棵树,每个点给个权值,求一下最大权独立集. 动态DP是这样的: 给棵树,每个点给个权值还到处改, ...

  4. 4712: 洪水 基于链分治的动态DP

    国际惯例的题面:看起来很神的样子......如果我说这是动态DP的板子题你敢信?基于链分治的动态DP?说人话,就是树链剖分线段树维护DP.既然是DP,那就先得有转移方程.我们令f[i]表示让i子树中的 ...

  5. 【洛谷】P4643 【模板】动态dp

    题解 在冬令营上听到冬眠的东西,现在都是板子了猫锟真的是好毒瘤啊(雾) (立个flag,我去thusc之前要把WC2018T1乱搞过去= =) 好的,我们可以参考猫锟的动态动态dp的课件,然后你发现你 ...

  6. 「LGP4719【模板】动态dp」

    题目 尽管知道这个东西应该不会考了,但是还是学一学吧 哎要是去年noip之前学该多好 动态\(dp\)就是允许修改的一个\(dp\),比如这道题,我们都知道这是一个树上最大点权独立集 众所周知方程长这 ...

  7. 洛谷 P4719 【模板】动态dp【动态dp】

    是动态dp的板子 大致思想就是用g[u]来表示不包含重链转移的dp值,然后用线段树维护重链,这样线段树的根就相当于这条重链的top的真实dp值 每次修改的时候,修改x点会影响到x到根的真实dp值,但是 ...

  8. bzoj5210 最大连通子块和 动态 DP + 堆

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5210 题解 令 \(dp[x][0]\) 表示以 \(x\) 为根的子树中的包含 \(x\) ...

  9. 模版 动态 dp

    模版 动态 dp 终于来写这个东西了.. LG 模版:给定 n 个点的数,点有点权, $ m $ 次修改点权,求修改完后这个树的最大独立集大小. 我们先来考虑朴素的最大独立集的 dp \[dp[u][ ...

随机推荐

  1. jquery方法简单记录

      append() - 在被选元素的结尾插入内容 prepend() - 在被选元素的开头插入内容 after() - 在被选元素之后插入内容 before() - 在被选元素之前插入内容 firs ...

  2. Exp1 逆向与bof基础

    20155332<网络对抗>Exp1 逆向与bof基础 1.实验目的 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简 ...

  3. 【Qt】QLabel之动态阴影边框

    效果如下: 实现思路参考了下面的文章: Qt 之 QPropertyAnimation 该文章是自定义属性alpha,原理类似,代码如下: //在头文件加入 Q_PROPERTY(int iBorde ...

  4. 【LG3768】简单的数学题

    [LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...

  5. Python中类和对象在内存中是如何保存?

    类以及类中的方法在内存中只有一份,而根据类创建的每一个对象都在内存中需要存一份,大致如下图: 如上图所示,根据类创建对象时,对象中除了封装 name 和 age 的值之外,还会保存一个类对象指针,该值 ...

  6. 在 OSX 下使用 supervisor 管理服务

    我为什么想用 supervisor 来管理服务呢?因为我在系统管理上属于处女座+任性的气质. OSX 下办公用的是普通用户,我不想在 root 权限下做过多设置污染我的系统. OSX 下的服务管理我感 ...

  7. 深入了解Kubernetes REST API的工作方式

    关于Kubernetes REST API的工作方式: 在哪里以及如何定义从REST路径到处理REST调用的函数的映射? 与etcd的交互发生在哪里? 从客户端发出请求到保存在etcd中对象的端到端路 ...

  8. 安装logstash及logstash的初步使用-处理DNS日志

    安装logstash 需要高版本的java 使用1.4版本的java会有报错 # Can't start up: not enough memory 查询java信息 rpm -qa | grep j ...

  9. L2-031 深入虎穴(BFS)

    著名的王牌间谍 007 需要执行一次任务,获取敌方的机密情报.已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门.每一扇门背后或者是一个房间,或者又有很多条路,同样是每条 ...

  10. 学习 google file system 心得体会

    Google File system文件系统,是在特别便宜的普通硬件设备上运行,它是一个面向大规模数据密集型运用的.可伸缩的分布式文件系统. 与传统文件相比,它认为组件失效是很平常的事件,因为GFS包 ...