The King’s Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4080    Accepted Submission(s): 1430

Problem Description
In the Kingdom of Silence, the king has a new problem. There are N cities in the kingdom and there are M directional roads between the cities. That means that if there is a road from u to v, you can only go from city u to city v, but can’t go from city v to city u. In order to rule his kingdom more effectively, the king want to divide his kingdom into several states, and each city must belong to exactly one state. What’s more, for each pair of city (u, v), if there is one way to go from u to v and go from v to u, (u, v) have to belong to a same state. And the king must insure that in each state we can ether go from u to v or go from v to u between every pair of cities (u, v) without passing any city which belongs to other state.
  Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
 
Input
The first line contains a single integer T, the number of test cases. And then followed T cases.

The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.

 
Output
The output should contain T lines. For each test case you should just output an integer which is the least number of states the king have to divide into.
 
Sample Input
1
3 2
1 2
1 3
 
Sample Output
2
 
Source
 
题目意思:
现在有n个点,m条边的有向图,要求划分的区域最少
规则如下:
1.可以互相到达的点必须属于一个区域
2.u可以到v或者v可以到v,即一个区域内任意两点u,v,必须存在路径从u->v或者从v->u
3.一个点只能属于一个区域
4.所有点都应该被划分
分析:
可以互相到达的点肯定是属于一个强连通分量的,所以利用tarjan将属于同一个强连通分量的点缩成一个点
得到新图,现在新图是一个DAG图,有向无环图
最小路径的定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点
对照一下题目:一个区域其实就是一条路径
最少的区域数目就是最少的路径数目
所以题目转换成最小不相交的路径覆盖,注意:不相交的路径,疑问一个点只能属于一个区域
最小不相交路径覆盖=点数-最大二分匹配
所以对得到的新图,求一遍最大二分匹配就好
最大二分匹配用匈牙利算法写
 
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x7fffffff
#define mem(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
} #define max_v 5005
int dfn[max_v];
int low[max_v];
int vis[max_v];
int stk[max_v];
int color[max_v];
vector<int> G[max_v];
vector<int> G2[max_v];
int n,m;
int sig,cnt,sp; int link[max_v];
int match[max_v];
void init()
{
mem(dfn,);
mem(low,);
mem(vis,);
mem(stk,);
mem(color,);
for(int i=;i<=n;i++)
{
G[i].clear();
G2[i].clear();
}
sig=;
cnt=;
sp=-;
} int tarjan(int u)
{
vis[u]=;
low[u]=dfn[u]=cnt++;
stk[++sp]=u;
for(int j=;j<G[u].size();j++)
{
int v=G[u][j];
if(vis[v]==)
tarjan(v);
if(vis[v]==)
low[u]=min(low[u],low[v]);
}
if(low[u]==dfn[u])
{
sig++;
do
{
color[stk[sp]]=sig;
vis[stk[sp]]=-;
}while(stk[sp--]!=u);
}
} int dfs(int u)
{
for(int j=;j<G2[u].size();j++)
{
int v=G2[u][j];
if(vis[v]==)
{
vis[v]=;
if(match[v]==-||dfs(match[v]))
{
match[v]=u;
return ;
}
}
}
return ;
} int max_match()//匈牙利算法
{
mem(match,-);
int ans=;
for(int i=;i<=sig;i++)
{
mem(vis,);
if(dfs(i))
ans++;
}
return ans;
} int main()
{
int t;
cin>>t;
int x,y;
while(t--)
{
scanf("%d %d",&n,&m);
init();
for(int i=;i<=m;i++)
{
scanf("%d %d",&x,&y);
if(count(G[x].begin(),G[x].end(),y)==)//重边
G[x].push_back(y);
}
for(int i=;i<=n;i++)
{
if(vis[i]==)
tarjan(i);
}
for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
if(color[i]!=color[G[i][j]])
{
if(count(G2[color[i]].begin(),G2[color[i]].end(),color[G[i][j]])==)//重边
G2[color[i]].push_back(color[G[i][j]]);
}
}
}
printf("%d\n",sig-max_match());//最小不相交路径覆盖=新图点数-最大二分匹配数
}
return ;
}
/*
题目意思:
现在有n个点,m条边的有向图,要求划分的区域最少
规则如下:
1.可以互相到达的点必须属于一个区域
2.u可以到v或者v可以到v,即一个区域内任意两点u,v,必须存在路径从u->v或者从v->u
3.一个点只能属于一个区域
4.所有点都应该被划分 分析:
可以互相到达的点肯定是属于一个强连通分量的,所以利用tarjan将属于同一个强连通分量的点缩成一个点
得到新图,现在新图是一个DAG图,有向无环图 最小路径的定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点 对照一下题目:一个区域其实就是一条路径
最少的区域数目就是最少的路径数目
所以题目转换成最小不相交的路径覆盖,注意:不相交的路径,疑问一个点只能属于一个区域 最小不相交路径覆盖=点数-最大二分匹配
所以对得到的新图,求一遍最大二分匹配就好
最大二分匹配用匈牙利算法写 gameover! */
 

HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)的更多相关文章

  1. HDU 3861.The King’s Problem 强联通分量+最小路径覆盖

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  2. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  3. HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...

  4. hdu 3861 The King’s Problem trajan缩点+二分图匹配

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 3861 The King’s Problem (强连通缩点+DAG最小路径覆盖)

    <题目链接> 题目大意: 一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.所有点只能属于一块区域:2,如果两点相互可达,则这两点必然要属于同一区域:3,区域内任意两点 ...

  6. 【HDOJ3861】【Tarjan缩点+最小路径覆盖】

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 The King’s Problem Time Limit: 2000/1000 MS (Java/Oth ...

  7. hdu——3861 The King’s Problem

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  9. HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...

随机推荐

  1. POJ1611(KB2-B)

    The Suspects Time Limit: 1000MS   Memory Limit: 20000K Total Submissions: 39211   Accepted: 18981 De ...

  2. CSS3实现的几个小loading效果

    昨晚上闲的没事突然想做几个小loading效果,下面是昨晚上做的几个小案例,分享给大家 1.水波loading:这个loading是我觉得非常简单,但是看上去的效果却非常不错的一个小loading 这 ...

  3. @Transactional事务不起作用原因

    想必也有人遇到@Transactional事务不起作用,当时我遇到这个问题也很懵逼,明明别人的代码跟自己的一样,为什么别人的@Transactional事务起作用而自己的事务却没有起作用.如下举例子说 ...

  4. mpvue最佳实践 , 美团出的一个小程序框架

    看手机微信,看到说美团出了1个小程序框架,  mpvue 搜下来试试,看了网上的一个对比 ----------------- 以下为引用 我们对微信小程序.mpvue.WePY 这三个开发框架的主要能 ...

  5. terminate called after throwing an instance of 'std::bad_alloc'

    这个错误,网上搜索到的资料大多是指向内存不足或者内存碎片问题,如下链接 http://bbs.csdn.net/topics/330000462 http://stackoverflow.com/qu ...

  6. VMware Linux下拖拽补丁vmtools的安装和卸载

    Linux下拖拽补丁vmtools的安装和卸载 by:授客 QQ:1033553122 Vmware 8.0.4为例子 步骤1.VM->Install Vmware Tools... 步骤2.查 ...

  7. android-studio开发NDK错误记录:bash: ../../build/intermediates/classes/debug: is a directory

    按照网上很多已有的教程,在用javah生成c的头文件时候报错: Error: no classes specified bash: ../../build/intermediates/classes/ ...

  8. Android 监听手机GPS打开状态

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/70854942 本文出自[赵彦军的博客] GPS_Presenter package ...

  9. 类与接口(三)java中的接口与嵌套接口

    一.接口 1. 接口简介 接口: 是java的一种抽象类型,是抽象方法的集合.接口比抽象类更加抽象的抽象类型. 接口语法: [修饰符] [abstract] interface 接口名 [extend ...

  10. Centos 7 安装GNOME桌面环境

    第一步:列出可安装的桌面环境 [root@local ~]# yum grouplist 第二步:安装GNOME及相应桌面管理工具 [root@local ~]# yum group info &qu ...