HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)
The King’s Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4080 Accepted Submission(s): 1430
Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
3 2
1 2
1 3
现在有n个点,m条边的有向图,要求划分的区域最少
规则如下:
1.可以互相到达的点必须属于一个区域
2.u可以到v或者v可以到v,即一个区域内任意两点u,v,必须存在路径从u->v或者从v->u
3.一个点只能属于一个区域
4.所有点都应该被划分
可以互相到达的点肯定是属于一个强连通分量的,所以利用tarjan将属于同一个强连通分量的点缩成一个点
得到新图,现在新图是一个DAG图,有向无环图
最少的区域数目就是最少的路径数目
所以题目转换成最小不相交的路径覆盖,注意:不相交的路径,疑问一个点只能属于一个区域
所以对得到的新图,求一遍最大二分匹配就好
最大二分匹配用匈牙利算法写
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x7fffffff
#define mem(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
} #define max_v 5005
int dfn[max_v];
int low[max_v];
int vis[max_v];
int stk[max_v];
int color[max_v];
vector<int> G[max_v];
vector<int> G2[max_v];
int n,m;
int sig,cnt,sp; int link[max_v];
int match[max_v];
void init()
{
mem(dfn,);
mem(low,);
mem(vis,);
mem(stk,);
mem(color,);
for(int i=;i<=n;i++)
{
G[i].clear();
G2[i].clear();
}
sig=;
cnt=;
sp=-;
} int tarjan(int u)
{
vis[u]=;
low[u]=dfn[u]=cnt++;
stk[++sp]=u;
for(int j=;j<G[u].size();j++)
{
int v=G[u][j];
if(vis[v]==)
tarjan(v);
if(vis[v]==)
low[u]=min(low[u],low[v]);
}
if(low[u]==dfn[u])
{
sig++;
do
{
color[stk[sp]]=sig;
vis[stk[sp]]=-;
}while(stk[sp--]!=u);
}
} int dfs(int u)
{
for(int j=;j<G2[u].size();j++)
{
int v=G2[u][j];
if(vis[v]==)
{
vis[v]=;
if(match[v]==-||dfs(match[v]))
{
match[v]=u;
return ;
}
}
}
return ;
} int max_match()//匈牙利算法
{
mem(match,-);
int ans=;
for(int i=;i<=sig;i++)
{
mem(vis,);
if(dfs(i))
ans++;
}
return ans;
} int main()
{
int t;
cin>>t;
int x,y;
while(t--)
{
scanf("%d %d",&n,&m);
init();
for(int i=;i<=m;i++)
{
scanf("%d %d",&x,&y);
if(count(G[x].begin(),G[x].end(),y)==)//重边
G[x].push_back(y);
}
for(int i=;i<=n;i++)
{
if(vis[i]==)
tarjan(i);
}
for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
if(color[i]!=color[G[i][j]])
{
if(count(G2[color[i]].begin(),G2[color[i]].end(),color[G[i][j]])==)//重边
G2[color[i]].push_back(color[G[i][j]]);
}
}
}
printf("%d\n",sig-max_match());//最小不相交路径覆盖=新图点数-最大二分匹配数
}
return ;
}
/*
题目意思:
现在有n个点,m条边的有向图,要求划分的区域最少
规则如下:
1.可以互相到达的点必须属于一个区域
2.u可以到v或者v可以到v,即一个区域内任意两点u,v,必须存在路径从u->v或者从v->u
3.一个点只能属于一个区域
4.所有点都应该被划分 分析:
可以互相到达的点肯定是属于一个强连通分量的,所以利用tarjan将属于同一个强连通分量的点缩成一个点
得到新图,现在新图是一个DAG图,有向无环图 最小路径的定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点 对照一下题目:一个区域其实就是一条路径
最少的区域数目就是最少的路径数目
所以题目转换成最小不相交的路径覆盖,注意:不相交的路径,疑问一个点只能属于一个区域 最小不相交路径覆盖=点数-最大二分匹配
所以对得到的新图,求一遍最大二分匹配就好
最大二分匹配用匈牙利算法写 gameover! */
HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)的更多相关文章
- HDU 3861.The King’s Problem 强联通分量+最小路径覆盖
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)
HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...
- HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...
- hdu 3861 The King’s Problem trajan缩点+二分图匹配
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861 The King’s Problem (强连通缩点+DAG最小路径覆盖)
<题目链接> 题目大意: 一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.所有点只能属于一块区域:2,如果两点相互可达,则这两点必然要属于同一区域:3,区域内任意两点 ...
- 【HDOJ3861】【Tarjan缩点+最小路径覆盖】
http://acm.hdu.edu.cn/showproblem.php?pid=3861 The King’s Problem Time Limit: 2000/1000 MS (Java/Oth ...
- hdu——3861 The King’s Problem
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...
- HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...
随机推荐
- HDU1029(KB12-B)
Ignatius and the Princess IV Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32767 K ( ...
- LeetCode DB : Delete Duplicate Emails
Write a SQL query to delete all duplicate email entries in a table named Person, keeping only unique ...
- 基于 Web 的 Go 语言 IDE - Wide 1.5.2 发布!
这个版本由热心的开源贡献者加入了韩语支持,欢迎各位 gophers 加入到 Wide 的开源开发中.另外,这个版本还改进了 Playground,使其更稳定和易用.目前黑客派社区已经支持嵌入 Wide ...
- 【mpvue】使用Mpvue撸一个简单的小程序
一.快速创建一个mpvue项目 全局安装 vue-cli (如果有就不需要装了) 创建一个基于mpvue-quickstart模板的新项目,记得选择安装vuex vue init mpvue/ ...
- AutoCAD.net-错误消息大全
case Acad::eOk:lstrcpy(Glb_AcadErrorInfo,_T("正确"));break;case Acad::eNotImplementedYet:lst ...
- Mariadb MySQL、Mariadb中GROUP_CONCAT函数使用介绍
MySQL.Mariadb中GROUP_CONCAT 函数使用介绍 By:授客 QQ:1033553122 语法: GROUP_CONCAT([DISTINCT] column_name [ORDER ...
- 【jdk源码2】Objects源码学习
在学习上一个类TreeMap的时候,提到了这个类,这个类是jdk1.7新增的,里面有很多实用的方法.就是一个工具类,熟悉以后,如果里面有已经实现的方法,那么就不要再去实现了,省时省力省测试. 一.简单 ...
- [WPF 基础知识系列] —— 绑定中的数据校验Vaildation
前言: 只要是有表单存在,那么就有可能有对数据的校验需求.如:判断是否为整数.判断电子邮件格式等等. WPF采用一种全新的方式 - Binding,来实现前台显示与后台数据进行交互,当然数据校验方式也 ...
- (Stanford CS224d) Deep Learning and NLP课程笔记(二):word2vec
本节课将开始学习Deep NLP的基础--词向量模型. 背景 word vector是一种在计算机中表达word meaning的方式.在Webster词典中,关于meaning有三种定义: the ...
- python 流程控制(for循环语句)
1,for循环基本语法 2, for循环常用序列 3,for循环 else使用方法 1,for循环基本语法 for iterating_var in sequence: statements(s) 2 ...