一开始森林里面有\(N\)只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过\(N-1\)次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当\(N=3\)时,就\(\{1-2,1-3\}\{1-2,2-3\}\{1-3,1-2\}\{1-3,2-3\}\{2-3,1-2\}\{2-3,1-3\}\)六种不同的打架过程。

Input

一个整数N。

Output

一行,方案数\(mod 9999991\)。

Sample Input

4

Sample Output

96

Hint

50%的数据\(N<=10^3\)。 100%的数据\(N<=10^6\)。

题意:

中文题面,不解释

题解:

用矩阵树定理

先得一邻接矩阵\((1)\)

\[\left|
\begin{matrix}
0 & 1 & 1 & \cdots & 1\\
1 & 0 & 1 & \cdots & 1\\
1 & 1 & 0 & \cdots & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
1 & 1 & 1 & \cdots & 0
\end{matrix}
\right|\tag{1}
\]

再得一度数矩阵\((2)\)

\[\left|
\begin{matrix}
N-1 & 0 & 0 & \cdots & 0\\
0 & N-1 & 0 & \cdots & 0\\
0 & 0 & N-1 & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & N-1
\end{matrix}
\right|\tag{2}
\]

\(\{2\}-\{1\}\)得基尔霍夫矩阵\((3)\)

\[\left|
\begin{matrix}
N-1 & -1 & -1 & \cdots & -1\\
-1 & N-1 & -1 & \cdots & -1\\
-1 & -1 & N-1 & \cdots & -1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
-1 & -1 & -1 & \cdots & N-1
\end{matrix}
\right|\tag{3}
\]

取前\(N-1\)行\(N-1\)列高斯消元,得\((4)\)

\[\left|
\begin{matrix}
1 & 1 & 1 & \cdots & 1\\
0 & N & 0 & \cdots & 0\\
0 & 0 & N & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & N
\end{matrix}
\right|\tag{4}
\]

然后求一下行列式就是答案了:

\(N^{N-2}\)

额,好吧还需要乘一个排列,因为打架的顺序可以不同

所以答案其实是:

\(N^{N-2}(N-1)!\)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll p=9999991;
ll a,ans=1;
int main(){
cin>>a;
for(ll i=1;i<=a-2;++i){
ans*=a;
ans%=p;
}
for(ll i=1;i<=a-1;++i){
ans*=i;
ans%=p;
}
cout<<ans<<endl;
}

小猴打架(luogu4430)(数论+生成树计数)的更多相关文章

  1. luogu4430 小猴打架

    假硕讲了个prufer编码和Caylay公式 我为了证明prufer编码没用 所以用矩阵树定理证明了Caylay公式 让我们用矩阵树定理推一波 首先这个小猴打架最后会打成一棵树,这棵树是N个点的完全图 ...

  2. P4430 小猴打架

    P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...

  3. BZOJ1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 328  Solved: 234[Submit][Status] Descripti ...

  4. bzoj 1430: 小猴打架 -- prufer编码

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...

  5. 【BZOJ 1430】 1430: 小猴打架 (Prufer数列)

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 625  Solved: 452 Description 一开始森林里面有N只互不相 ...

  6. 洛谷 P4430 小猴打架

    洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...

  7. bzoj 1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 634  Solved: 461[Submit][Status][Discuss] ...

  8. bzoj 1430 小猴打架 prufer 性质

    小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 709  Solved: 512[Submit][Status][Discuss] Descri ...

  9. [bzoj1430]小猴打架_prufer序列

    小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们 ...

随机推荐

  1. ajax在jQuery中的应用 (1)加载异步数据

  2. springMVC 学习 五 参数传递(包括restful风格)

    (一)SpringMVC Controller接受参数的方式 (1) 前端传递的参数,在springMVC的controller中使用基本数据类型或者String 类型进行接受 在前端有一个form表 ...

  3. spring学习 十二 AspectJ-based的通知入门 带参数的通知

    第一步:编写通知类 package com.airplan.pojo; import org.aspectj.lang.ProceedingJoinPoint; public class Advice ...

  4. NOIP2017提高组预赛详解

    NOIP2017预赛终于结束了. 普遍反映今年的卷子难度较大,但事实上是这样吗?马上我将为您详细地分析这张试卷,这样你就能知道到底难不难. 对了答案,鄙人考得还是太差了,只有91分. 那么下面我们就一 ...

  5. day16正则表达式作业

    1.匹配一篇英文文章的标题 类似 The Voice Of China #([A-Z][a-z]*)( [A-Z][a-z]*)* 2.匹配一个网址 #(https|http|ftp):\/\/[^\ ...

  6. 使用小技巧加快IDEA的开发速度

    一.live template的使用. 1.live template(自定义模板的载入)打开: Ctrl+shift+A 再在命令行中间输入live  template弹出用户自定义的界面.需要自行 ...

  7. pycharm显示Unresolved reference

    状态:已解决 原因:不知道怎么表达 解决方法:重装django,,,,,,,,,,,,,,,,,,,

  8. centos7 sqoop 1 搭建笔记

    1.require : java环境,hadoop,hive ,mysql2.下载解压sqoop13.设置环境变量 export SQOOP_HOME=/data/spark/bin/sqoop ex ...

  9. vue 开发系列(六) 企业微信整合

    概述 手机端程序可以和企业微信进行整合,我们也可以使用企业微信JSSDK功能,实现一些原生的功能. 整合步骤 在整合之前需要阅读 整合步骤. http://work.weixin.qq.com/api ...

  10. VIM 与 系统剪切版

    1, 查看 vim 是否支持 clipboard 功能 $ vim --version | grep clipboard 2, 如果有 +clipboard 则跳过这一步; 如果显示的是 -clipb ...