Number of Islands I & II
Given a boolean 2D matrix, find the number of islands.
Notice
0 is represented as the sea, 1 is represented as the island. If two 1 is adjacent, we consider them in the same island. We only consider up/down/left/right adjacent.
Given graph:
[
[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 1]
]
return 3.
分析:
从第一个数到最后一个数,如果遇到1,则island count 加1, 并且不断递归去寻找周围的1。
public class Solution {
public int numIslands(char[][] grid) {
int count = ;
if (grid == null || grid.length == ) return count;
int m = grid.length, n = grid[].length;
boolean[][] visited = new boolean[m][n];
for (int i = ; i < m; i++) {
for (int j = ; j < n; j++) {
if (!visited[i][j] && grid[i][j] == '') {
count++;
flood(i, j, grid, visited);
}
}
}
return count;
}
private void flood(int i, int j, char[][] grid, boolean[][] visited) {
if (i < || i >= grid.length || j < || j >= grid[].length) return;
if (grid[i][j] == '' || visited[i][j]) return;
visited[i][j] = true;
flood(i + , j, grid, visited);
flood(i - , j, grid, visited);
flood(i, j + , grid, visited);
flood(i, j - , grid, visited);
}
}
Follow up:
Find the perimeter of the island. Answer: find the # of 1 which is next to 0.
Number of Islands II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand operation which turns the water at position (row, col) into a land. Given a list of positions to operate, count the number of islands after each addLand operation. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Example:
Given m = 3, n = 3, positions = [[0,0], [0,1], [1,2], [2,1]].
Initially, the 2d grid grid is filled with water. (Assume 0 represents water and 1 >represents land).
0 0 0
0 0 0
0 0 0
Operation #1: addLand(0, 0) turns the water at grid0 into a land.
1 0 0
0 0 0 Number of islands = 1
0 0 0
Operation #2: addLand(0, 1) turns the water at grid0 into a land.
1 1 0
0 0 0 Number of islands = 1
0 0 0
Operation #3: addLand(1, 2) turns the water at grid1 into a land.
1 1 0
0 0 1 Number of islands = 2
0 0 0
Operation #4: addLand(2, 1) turns the water at grid2 into a land.
1 1 0
0 0 1 Number of islands = 3
0 1 0
We return the result as an array: [1, 1, 2, 3]
分析:https://segmentfault.com/a/1190000004197552
很典型的union-find题。因为这里是动态的增加land,要能随时求出有多少个island,最简单的方法就是union-find。我们可以定义一个counter, 每增加一个land, 增加counter, 然后我们搜索那个land邻居区域,发现root不一样的话,意味着可以union, 每union一次,意味着两个island合并成一个,减小counter, 统计最终的counter值,即是增加land后的最终island的个数。
为了减小时间复杂度,代码实现是QuickUnion + Path Compression, Path Compression目的是为了调整树的高度,保持很平的树,而不是越来越高,这样找root不会出现worst case.
public class Solution {
public List<Integer> numIslands2(int m, int n, int[][] positions) {
int[] id = new int[m * n]; // 表示各个index对应的root
Arrays.fill(id, -); // 初始化root为-1,用来标记water, 非-1表示land
List<Integer> res = new ArrayList<>();
int count = ; // 记录island的数量
int[][] dirs = { { -, }, { , }, { , }, { , - } };
for (int i = ; i < positions.length; i++) {
count++;
int index = positions[i][] * n + positions[i][];
id[index] = index; // root初始化
for (int j = ; j < dirs.length; j++) {
int x = positions[i][] + dirs[j][];
int y = positions[i][] + dirs[j][];
if (x >= && x < m && y >= && y < n && id[x * n + y] != -) {
int root = root(id, x * n + y); // this is the root of the neibor's islands
// 发现root不等的情况下,才union, 同时减小count。注意,一定要用当前index作为新的root,这样才能保证相连的岛是同一个root。
if (root != index) {
id[root] = index; // set the neighbor's island's root to be the new island index
count--;
}
}
}
res.add(count);
}
return res;
}
public int root(int[] id, int i) {
while (i != id[i]) {
id[i] = id[id[i]]; // 优化,为了减小树的高度
i = id[i];
}
return i;
}
}
Number of Islands I & II的更多相关文章
- [LeetCode] Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] 305. Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] Number of Islands II
Problem Description: A 2d grid map of m rows and n columns is initially filled with water. We may pe ...
- Leetcode: Number of Islands II && Summary of Union Find
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- 305. Number of Islands II
题目: A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand ...
- [Swift]LeetCode305. 岛屿的个数 II $ Number of Islands II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- LeetCode – Number of Islands II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- LeetCode 305. Number of Islands II
原题链接在这里:https://leetcode.com/problems/number-of-islands-ii/ 题目: A 2d grid map of m rows and n column ...
- [LeetCode] 305. Number of Islands II 岛屿的数量 II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
随机推荐
- 读C#程序最小公倍数答案就是:2123581660200
阅读下面程序,请回答如下问题: 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间 ...
- vsphere web client 使用中文的解决办法
1. 很多网站这么说的: vsphere web client的默认URL为:https://hostname:9443/vsphere-client 可以在URL后面加上一个参数来指定区域语言 英语 ...
- Java多线程与线程同步
六.多线程,线程,同步 ①概念: 并行:指两个或多个在时间同一时刻发生(同时发生) 并发:指两个或多个事件在同一时间段内发生 具体概念: 在操作系统中,安装了多个程序,并发指的是在一段时间内宏观上有多 ...
- pgm10
这部分讨论 MAP 估计.从某个角度上来说,我们可以将这个问题转换成为前面讨论过的: 这样一来我们只需要将原先的 sum-product 换成 max-sum 即可.话虽这么说,我们还是看看 Koll ...
- The Accomodation of Students HDU - 2444(判断二分图 + 二分匹配)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- Fire Net HDU - 1045(二分匹配)
把每一列中相邻的 . 缩为一个点 作为二分图的左边 把每一行中相邻的 . 缩为一个点 作为二分图的右边 然后求最大匹配即可 这题用匈牙利足够了...然而..我用了hk...有点大材小用的感觉// ...
- 【转】为什么 MQTT 是最适合物联网的网络协议
初识 MQTT 为什么 MQTT 是最适合物联网的网络协议 Michael Yuan2017 年 6 月 14 日发布 WeiboGoogle+用电子邮件发送本页面 0 物联网 (IoT) 设备必须连 ...
- 洛谷 P5108 仰望半月的夜空 解题报告
P5108 仰望半月的夜空 题目描述 半月的夜空中,寄托了多少人与人之间的思念啊 曦月知道,这些思念会汇集成一个字符串\(S(n = |S|)\) 由于思念汇集的过于复杂,因此曦月希望提炼出所有的思念 ...
- asp.net性能优化之使用Redis缓存(入门)
1:使用Redis缓存的优化思路 redis的使用场景很多,仅说下本人所用的一个场景: 1.1对于大量的数据读取,为了缓解数据库的压力将一些不经常变化的而又读取频繁的数据存入redis缓存 大致思路如 ...
- list对象指针与指针类型list
#include <string> #include <cctype> #include <algorithm> #include <iostream> ...