一、预告篇:

  很久很久以前,有个SVM, 然后,……………………被deep learning 杀死了……………………………………

.

完结……撒花

二、正式篇

  好吧,关于支持向量机有一个故事 ,故事是这样子的:

在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

<img src="https://pic2.zhimg.com/50/5aff2bcdbe23a8c764a32b1b5fb13b71_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

于是大侠这样放,干的不错?

<img src="https://pic2.zhimg.com/50/3dbf3ba8f940dfcdaf877de2d590ddd1_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。

<img src="https://pic4.zhimg.com/50/0b2d0b26ec99ee40fd14760350e957af_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。

<img src="https://pic2.zhimg.com/50/4b9e8a8a87c7982c548505574c13dc05_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。

<img src="https://pic4.zhimg.com/50/7befaafc45763b9c4469abf245dc98cb_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后,在SVM 工具箱中有另一个更加重要的 trick。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。

<img src="https://pic4.zhimg.com/50/558161d10d1f0ffd2d7f9a46767de587_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。

<img src="https://pic4.zhimg.com/50/55d7ad2a6e23579b17aec0c3c9135eb3_hd.png" data-rawwidth="300" data-rawheight="167" class="content_image" width="300">

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。

<img src="https://pic3.zhimg.com/50/e5d5185561a4d5369f36a9737fc849c6_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

再之后,无聊的大人们,把这些球叫做数据 「data」,把棍子 叫做分类器 「classifier」, 最大间隙trick 叫做最优化「optimization」, 拍桌子叫做核「kernelling」, 那张纸叫做超平面「hyperplane」。

文章来源:

0、http://www.cnblogs.com/sunbinbin/p/5827449.html

SVM其他链接:

1、http://www.jianshu.com/p/4e7103978c92

-- SVM通俗理解

2、http://www.dataguru.cn/forum.php?mod=viewthread&tid=371987

--核函数相关,那个会转的图不错

3、http://blog.csdn.net/v_july_v/article/details/7624837

--SVM大全,从入门到放弃

4、http://www.csie.ntu.edu.tw/~cjlin/libsvm/

--一个很不错的svm网站,内部有个黑框,可以自行调整参数C,ε,对线性核RBF核会有个直观感受

5、http://blog.csdn.net/abcjennifer/article/details/7849812

--SVM的细致推导,源自一个网易公开课,

6、https://en.wikipedia.org/wiki/Support_vector_machine

--wiki百科--自由的百科全书

7、http://open.163.com/movie/2008/1/C/6/M6SGF6VB4_M6SGJVMC6.html

---Andrew Ng,机器学习大神

       
              

关于SVM(support vector machine)----支持向量机的一个故事的更多相关文章

  1. 机器学习算法 --- SVM (Support Vector Machine)

    一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...

  2. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  3. SVM (support vector machine)

    简单原理流程转自:http://wenku.baidu.com/link?url=57aywD0Q6WTnl7XKbIHuEwWENnSuPS32QO8X0a0gHpOOzdnNt_K0mK2cucV ...

  4. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  5. 使用Support Vector Machine

    使用svm(Support Vector Machine)中要获得好的分类器,最重要的是要选对kernel. 常见的svm kernel包括linear kernel, Gaussian kernel ...

  6. 支持向量机(Support Vector Machine,SVM)—— 线性SVM

      支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...

  7. 机器学习之支持向量机(Support Vector Machine)

    转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...

  8. Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界

    在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...

  9. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

随机推荐

  1. 使用vue,react,angular等框架和不使用框架使用jquery的优缺点

    jquery和vue react等框架有着本质上的区别,从jquery到vue.react 或者说是到mvvm的转变,是一个思想的转变,是将原有的直接操作dom的思想转变到操作数据上去. vue更关注 ...

  2. C++标准库addressof的应用

    C++11将addressof作为标准库的一部分,用于取变量和函数等内存地址. 代码示例: #include <memory> #include <stdio.h> void ...

  3. MIT molecular Biology 笔记11 位点特异性重组 和 DNA转座

    位点特异性重组 和 DNA转座 视频 https://www.bilibili.com/video/av7973580/ 教材 Molecular biology of the gene 7th ed ...

  4. C++之引用和指针

    作者:tongqingliu 转载请注明出处:http://www.cnblogs.com/liutongqing/p/7050431.html C++之引用和指针 C++引用 引用的基本用法: in ...

  5. 解决mac安装homebrew后报错-bash: brew: command not found

    解决mac安装homebrew后报错-bash: brew: command not found     参照官网上很简单的一句安装命令, /usr/bin/ruby -e "$(curl ...

  6. Using Spring.net in console application

    Download Spring.net in http://www.springframework.net/ Install Spring.NET.exe Create a console appli ...

  7. Reorder the Books -- hdu -- 5500

    http://acm.hdu.edu.cn/showproblem.php?pid=5500 Reorder the Books Time Limit: 4000/2000 MS (Java/Othe ...

  8. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  9. iOS 百度地图截屏

    关于百度地图截屏的问题,发现不能用常用的方法进行载屏,常用的截屏方法所得到的图片地图瓦片底图会显示空白,网上给出的答案是这样的 :因为百度地图不是用UIKit实现的,所以得不到截图! 不过通过Open ...

  10. 蒲公英: 一个提供App 存储、分发、Bug管理的网站

    一.蒲公英内测应用, https://www.pgyer.com/ 内测应用,仅需两步: 将应用上传到网站,生成安装链接和二维码 用户在手机上打开安装链接,或扫码二维码,即可开始安装 二.蒲公英Bug ...