关于SVM(support vector machine)----支持向量机的一个故事
一、预告篇:
很久很久以前,有个SVM, 然后,……………………被deep learning 杀死了……………………………………
.
完结……撒花
二、正式篇
好吧,关于支持向量机有一个故事 ,故事是这样子的:
在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。
魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”
<img src="https://pic2.zhimg.com/50/5aff2bcdbe23a8c764a32b1b5fb13b71_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

于是大侠这样放,干的不错?
<img src="https://pic2.zhimg.com/50/3dbf3ba8f940dfcdaf877de2d590ddd1_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。
<img src="https://pic4.zhimg.com/50/0b2d0b26ec99ee40fd14760350e957af_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。
<img src="https://pic2.zhimg.com/50/4b9e8a8a87c7982c548505574c13dc05_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。
<img src="https://pic4.zhimg.com/50/7befaafc45763b9c4469abf245dc98cb_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后,在SVM 工具箱中有另一个更加重要的 trick。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。
<img src="https://pic4.zhimg.com/50/558161d10d1f0ffd2d7f9a46767de587_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。
<img src="https://pic4.zhimg.com/50/55d7ad2a6e23579b17aec0c3c9135eb3_hd.png" data-rawwidth="300" data-rawheight="167" class="content_image" width="300">

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。
<img src="https://pic3.zhimg.com/50/e5d5185561a4d5369f36a9737fc849c6_hd.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

再之后,无聊的大人们,把这些球叫做数据 「data」,把棍子 叫做分类器 「classifier」, 最大间隙trick 叫做最优化「optimization」, 拍桌子叫做核「kernelling」, 那张纸叫做超平面「hyperplane」。
文章来源:
0、http://www.cnblogs.com/sunbinbin/p/5827449.html
SVM其他链接:
1、http://www.jianshu.com/p/4e7103978c92
-- SVM通俗理解
2、http://www.dataguru.cn/forum.php?mod=viewthread&tid=371987
--核函数相关,那个会转的图不错
3、http://blog.csdn.net/v_july_v/article/details/7624837
--SVM大全,从入门到放弃
4、http://www.csie.ntu.edu.tw/~cjlin/libsvm/
--一个很不错的svm网站,内部有个黑框,可以自行调整参数C,ε,对线性核RBF核会有个直观感受
5、http://blog.csdn.net/abcjennifer/article/details/7849812
--SVM的细致推导,源自一个网易公开课,
6、https://en.wikipedia.org/wiki/Support_vector_machine
--wiki百科--自由的百科全书
7、http://open.163.com/movie/2008/1/C/6/M6SGF6VB4_M6SGJVMC6.html
---Andrew Ng,机器学习大神
关于SVM(support vector machine)----支持向量机的一个故事的更多相关文章
- 机器学习算法 --- SVM (Support Vector Machine)
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...
- 支持向量机SVM(Support Vector Machine)
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...
- SVM (support vector machine)
简单原理流程转自:http://wenku.baidu.com/link?url=57aywD0Q6WTnl7XKbIHuEwWENnSuPS32QO8X0a0gHpOOzdnNt_K0mK2cucV ...
- 支持向量机 support vector machine
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...
- 使用Support Vector Machine
使用svm(Support Vector Machine)中要获得好的分类器,最重要的是要选对kernel. 常见的svm kernel包括linear kernel, Gaussian kernel ...
- 支持向量机(Support Vector Machine,SVM)—— 线性SVM
支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...
- 机器学习之支持向量机(Support Vector Machine)
转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...
- Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界
在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...
- Support Vector Machine (1) : 简单SVM原理
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
随机推荐
- Android APP测试流程
一. Monkey测试(冒烟测试) 使用monkey测试工具进行如下操作: 1. APP的安装 2. APP随机操作测试(APP压力测试) 3. APP的卸载 二. 安装卸载测试 1. 使用测试真机进 ...
- boost--asio
1.asio综述 asio的核心类是io_service,它相当于前摄器模式的Proactor角色,在异步模式下发起的I/O操作,需要定义一个用于回调的完成处理函数,当I/O完成时io_service ...
- IntelliJ IDEA 2017版 spring-boot2.0.4+mybatis反向工程;mybatis+springboot逆向工程
一.搭建环境 采用IDE自动建立项目方式 然后,next next,配置导入依赖包 项目就生成了,在项目下导入配置文件GeneratorMapper.xml(项目结构如图所示) 配置文档,建立数据库和 ...
- UVa 11762 Race to 1 (数学期望 + 记忆化搜索)
题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. ...
- keras model.compile(loss='目标函数 ', optimizer='adam', metrics=['accuracy'])
深度学习笔记 目标函数的总结与整理 目标函数,或称损失函数,是网络中的性能函数,也是编译一个模型必须的两个参数之一.由于损失函数种类众多,下面以keras官网手册的为例. 在官方keras.io里 ...
- VSS + Eclipse 管理源码
- Linux后台开发工具箱
https://files-cdn.cnblogs.com/files/aquester/Linux后台开发工具箱.pdf 目录 目录 1 1. 前言 3 2. 脚本类工具 3 2.1. sed命令- ...
- 最完美的Linux桌面软件
下面是关于Linux桌面环境下,目前为止最完美的部分.之所以说他们完美,是因为他们不但很养眼,而且也使用最好的多媒体技术,有最好的可用性.在某些方面,他们甚至超过了Windows和Mac-OS. 基础 ...
- Latex中图表位置的控制
\begin{figure}[!htbp] 其中htbp是可选的,它们分别代表 !-忽略“美学”标准 h-here t-top b-bottom p-page-of-its-own
- 标记化结构初始化语法 在结构体成员前加上小数点 如 “.open .write .close ”C99编译器 .
今天在看串口驱动(四)的时候 有这样一个结构体初始化 我很不理解 如下: static struct s3c24xx_uart_port s3c24xx_serial_ports[NR_PORTS] ...