这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂。也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写。经过这两天的文档以及相关资料,并且请教了国内的师弟。今天算是有点小感受了。简单的说,就是计算图是从一个管道中读取数据的,录入管道是用的现成的方法,读取也是。为了保证多线程的时候从一个管道读取数据不会乱吧,所以这种时候 读取的时候需要线程管理的相关操作。今天我实验室了一个简单的操作,就是给一个有序的数据,看看读出来是不是有序的,结果发现是有序的,所以直接给代码:

import tensorflow as tf
import numpy as np def generate_data():
num = 25
label = np.asarray(range(0, num))
images = np.random.random([num, 5, 5, 3])
print('label size :{}, image size {}'.format(label.shape, images.shape))
return label, images def get_batch_data():
label, images = generate_data()
images = tf.cast(images, tf.float32)
label = tf.cast(label, tf.int32)
input_queue = tf.train.slice_input_producer([images, label], shuffle=False)
image_batch, label_batch = tf.train.batch(input_queue, batch_size=10, num_threads=1, capacity=64)
return image_batch, label_batch image_batch, label_batch = get_batch_data()
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess, coord)
i = 0
try:
while not coord.should_stop():
image_batch_v, label_batch_v = sess.run([image_batch, label_batch])
i += 1
for j in range(10):
print(image_batch_v.shape, label_batch_v[j])
except tf.errors.OutOfRangeError:
print("done")
finally:
coord.request_stop()
coord.join(threads)

记得那个slice_input_producer方法,默认是要shuffle的哈。

Besides, I would like to comment this code. 
1: there is a parameter ‘num_epochs’ in slice_input_producer, which controls how many epochs the slice_input_producer method would work. when this method runs the specified epochs, it would report the OutOfRangeRrror. I think it would be useful for our control the training epochs. 
2: the output of this method is one single image, we could operate this single image with tensorflow API, such as normalization, crops, and so on, then this single image is feed to batch method, a batch of images for training or testing would be received

tensorflow batch的更多相关文章

  1. Tensorflow Batch normalization函数

    Tensorflow Batch normalization函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 stackoverflow上tensorflow实现BN的不同函数的 ...

  2. TensorFlow batch normalize的使用

    TensorFlow batch normalize的使用 batch normalize 经常与CNN搭配使用,据一些研究表面,在RNN层数不是很深的时候使用batch normalize是会用损害 ...

  3. 使用TensorFlow中的Batch Normalization

    问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题, ...

  4. TensorFlow之CNN:运用Batch Norm、Dropout和早停优化卷积神经网络

    学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方.这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用B ...

  5. TensorFlow之DNN(二):全连接神经网络的加速技巧(Xavier初始化、Adam、Batch Norm、学习率衰减与梯度截断)

    在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦) ...

  6. 在tensorflow中使用batch normalization

    问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题,但是却不能保证在训练过程中不出现该问题, ...

  7. TensorFlow走过的坑之---数据读取和tf中batch的使用方法

    首先介绍数据读取问题,现在TensorFlow官方推荐的数据读取方法是使用tf.data.Dataset,具体的细节不在这里赘述,看官方文档更清楚,这里主要记录一下官方文档没有提到的坑,以示" ...

  8. tensorflow中batch normalization的用法

    网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下: 1.原理 公式如下: y=γ(x-μ)/σ+β 其中x是输入,y是输出,μ是均值,σ ...

  9. Tensorflow datasets.shuffle repeat batch方法

    机器学习中数据读取是很重要的一个环节,TensorFlow也提供了很多实用的方法,为了避免以后时间久了又忘记,所以写下笔记以备日后查看. 最普通的正常情况 首先我们看看最普通的情况: # 创建0-10 ...

随机推荐

  1. Loadrunner脚本优化-参数化之关联MySQL数据库获取数据

    脚本优化-参数化之关联MySQL数据库获取数据 by:授客 QQ:1033553122 测试环境: Loadrunner 11 Win7 64位 实操: 1.   安装MySQL ODBC驱动程序 O ...

  2. MySql 定时任务的使用

    MySql 定时任务的使用 by:授客 QQ:1033553122 简介 自 MySQL5.1.6起,增加了一个非常有特色的功能–事件调度器(Event Scheduler),可以用做定时执行某些特定 ...

  3. 数据库批量操作中SqlParameter参数传递的问题

    数据库批量操作 比如会写:update T_AdminUsers set IsEnabled=@IsEnabled where Id in (@ids) 然后再SqlParameter("@ ...

  4. Expo大作战(二十四)--expo sdk api之Accelerometer

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...

  5. [Android] 实现简单的相机程序

    好久没写了,有些东西做过都快忘了,赶紧记一下. 现在来实现一个简单的相机程序. 原文地址http://www.cnblogs.com/rossoneri/p/4246134.html 当然需要的话可以 ...

  6. Docker相关概念

    一.概念 ①云计算:是一种资源的服务模式,该模式可以实现随时随地,便捷按需地从可配置计算资源共享池中获取所需的资源(如网络.服务器.存储.应用及服务),资源能够快速供应并释放,大大减少了资源管理工作的 ...

  7. Java语法基础(四)----循环结构语句

    一.循环结构: 循环语句可以在满足循环条件的情况下,反复执行某一段代码,这段被重复执行的代码被称为循环体语句,当反复执行这个循环体时,需要在合适的时候把循环判断条件修改为false,从而结束循环,否则 ...

  8. JS获取元素宽高的两种情况

    JS获取元素宽高分两种情况, 一.内联样式,也就是直接把width和height写在HTML元素中的style里: 这种情况使用     document.getElementById('xxx'). ...

  9. python的学习之路day7-socket网络编程

    python基础部分学习完了,时间也已经过了两个月左右,感觉没学到什么,可能是我学习之后忘记的太多了. 由于没钱买书,要是去培训就更没钱了,所以在网上找了一本书,感觉还不错,讲的比较好,比较详细. P ...

  10. Python学习--- requests库中文编码问题

    为什么会有ISO-8859-1这样的字符集编码 requests会从服务器返回的响应头的 Content-Type 去获取字符集编码,如果content-type有charset字段那么request ...