题解 P5239 【回忆京都】
你们这些写题解的,就不能把话说清楚嘛!(吐槽1)
你们这些出题的,就不能多出点东方嘛!(吐槽2)
你们这些做题的,就不来写一篇详细一点的题解嘛!(吐槽3)
以上均是个人吐槽,纯属吐槽,不带任何针对性和感情色彩。
声明:
本题解适宜蒟蒻(比如我等)观看,若卡关,可以来此题解领提示。
小金羊写的题解致力于让刚刚学习二维数组的同学都能明白!!
把我顶上去让像我一样的juruo明白一下
回到正题。
首先还是看看这个题咋推出来的和杨辉三角&二位前缀和有关系?
我自己用python 3先手推了一下组合数,
先上python 3推组合数的代码:
import os
def jc(num):
if num is 0 or num is 1:
return 1
else :
return num*jc(num-1)
#阶乘递归版,适用于自己造的小型数据
#不是机惨w......
def zhs(i,j):
if i > j :
return 0
else :
return jc(j)/(jc(i)*jc(j-i))
#组合数配合阶乘递归,适用于小型数据推算
n=int(input())
while n is not 0:
n-=1
L=list(input().split())
print(zhs(int(L[0]),int(L[1])))
os.system("pause")
'''
print("Exit?",end=' ')
if input() is 'Yes':exit(1)
else :exit(1)
'''
一个个试一下,然后就发现这样一个鬼畜事件:

打眼一看:好像跟杨辉三角有那么点联系......
哦!缺了第一列的杨辉三角!
然后杨辉三角创造方法:\(O(1000^2\div 2)\)递推打表!
公式:
\]
别忘了取模(废话)
等等......
这个和此题有什么联系吗?
这个题让求组合数的和。
求和,先把区间用yellow色画出来。
然后发现......
(下图中填充黄色的是求和区域,紫色是和)


你发现了吗?这是一个二重的杨辉三角!
其实就是一个二维的前缀和预处理工作。
没有事情干的同学,树状数组&线段树都可解决这个问题。
根本就是两次递推打表!
然后这个题第一次我竟然只有10分......
但是要追求一个最优的方法。
这个时候我们要改一下原先的变量定义,是关于ans[i][j]方面:
设ans[i][j]表示的是前i列前j行的前缀和。
推出这个题前缀和公式的过程:
杨辉三角到底有什么好处?
其实杨辉三角给你预处理了单列上的前缀和。
然后单列上前缀和用汉语表示就是:
杨辉三角形第i列上前j行の前缀和就是杨辉三角形第i+1行第j+1列上的数据。
数学公式?(第一个中括号内暂定是1)
\]
根据以上推论,得出很多列的(就是二维的)前缀和推论。
汉语表达:
前i+1列前j+1行的前缀和就等于前i+1列前j行的前缀和加上前i+1列第j+1行的前缀和(即杨辉三角形第i+2行第j+2列那一项)。
公式?
\]
这样避免了许多不必要的记公式过程......
Upd4 2019/3/6:
有同学问,为啥是给你预处理了单列上的前缀和?
我们根据\(yh[i][j]=yh[i-1][j-1]+yh[i-1][j]\),
那么又\(\because yh[i-1][j]=yh[i-2][j-1]+yh[i-1][j]\)......
以此类推,得到yh[i+1][j+1],相当于我们得到了杨辉三角第j列的前i个数的和+\(yh[1][j]\)。
且根据我们杨辉三角靠左排列放置的方式,\(yh[1][j](j>0)\)必定为0。(观察可知\(yh[0][0]\)的右侧即\(yh[0][1]=0\),而右侧\(yh[0][1]\)和右侧数据都是0)
于是我们得出递推公式,ans[i][j]=ans[i][j-1]+yh[i+1][j+1]。
到这里,我们找到了一个非常完美的没有过多数据+-的操作。
(qwq比cz dalao的算法的常数小)
坑点:
1.你以为取了mod就不会爆负数吗?太天真啦!
\(\therefore ans=(ans+mod)\)%\(mod\)
2.你以为我会\(O(2\cdot 1000^2)\)做吗?太天真啦!
复杂度\(O(1000^2\div 2+1000^2+query)\)
Upd1 2019/3/3:
关于代码和蒟蒻的二维前缀和求法补充完善
代码来辣!
求前缀和还是预处理吧......线段树什么的玩不来......
注意下面代码,求前缀和的时候意义和求杨辉三角的时候有所不同。
(原因见上面)
#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
typedef long long int lli;
const int maxn=1008;
const lli mod=19260817;
lli yh[maxn+1][maxn+1],ans[maxn+1][maxn+1];
int n,m,q;
void Init()
{
for (register int i=0;i<=1004;i++)
{
yh[i][i]=1;
}
for (register int i=0;i<=1004;i++)
{
yh[i][0]=1;
}
for (register int i=2;i<=1004;i++)
{
for (register int j=1;j<=i;j++)
{
yh[i][j]=(yh[i-1][j-1]+yh[i-1][j]+mod)%mod;
}
}
//杨辉三角形的生成方式
for (register int i=1;i<=1004;i++)
{//前i列
for (register int j=1;j<=1004;j++)
{//前j行
ans[i][j]=(ans[i][j-1]+yh[i+1][j+1]+mod)%mod;
}
}
//二维前缀和的生成方式
}
int main()
{
Init();
scanf("%d",&q);
while (q--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",ans[m][n]);
//注意ans[][]的定义!!
}
return 0;
}
Upd2 2019/3/3:
重新更正代码,实际4-WA,现在AC。
原因在于这个算法的局限性:
实际上需要推到1000+,时间复杂度上虽然小了,但是容易边界数据卡没了......
实际上我就是这样4-WA:read 0的......
题解 P5239 【回忆京都】的更多相关文章
- P5239 回忆京都
题目地址:P5239 回忆京都 杨辉三角即组合数的"打表"形式 再求一个二维前缀和 然后处理一下负数即可(因为在求前缀和的过程中有减法) #include <bits/std ...
- 洛谷 P5239 回忆京都 题解
题面 裸的杨辉三角前缀和,但----- 在求前缀和的时候有可能得到一个负数(由于取模的原因),所以一定要加上模数后再取模!!!! #include <bits/stdc++.h> #def ...
- P5239 回忆京都(洛谷3月月赛T2)
题目描述 射命丸文在取材中发现了一个好玩的东西,叫做组合数. 组合数的定义如下:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.所有组合的数量,就是组合数 ...
- 洛谷P5239 回忆京都
和 NOIP2016TG 组合数问题 差不多是一样的-- 首先要知道杨辉三角和组合数之间的关系 看一下数据范围,很明显要避免重复计算,而且查询的复杂度要非常小 一看n, m <= 1000 这明 ...
- HBSX2019 3月训练
Day 1 3月有31天废话 今天先颓过了就只剩30天了 初步计划 每天一道字符串/数据结构题 图论学习 根据<若干图论模型探讨>(lyd)复习 二分图与网络流学习 <算法竞赛进阶指 ...
- 5239-回忆京都-洛谷3月赛gg祭
传送门 题目背景 第十五届东方人气投票 音乐部门 106名 第四次国内不知道东方的人对东方原曲的投票调查 51名 回忆京都副歌我tm吹爆,东方文花帖我tm吹爆! 题目描述 射命丸文在取材中发现了一个好 ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵
E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...
- 【BZOJ1264】[AHOI2006]基因匹配Match DP+树状数组
[BZOJ1264][AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而 ...
- 【BZOJ2795】[Poi2012]A Horrible Poem hash
[BZOJ2795][Poi2012]A Horrible Poem Description 给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节.如果字符串B是字符串 ...
随机推荐
- Java 将任意数组的任意两个位置的数据进行交换
package yw.fanxing; /** * 自定义泛型测试 * * 写一个方法,将任意数组的任意两个位置的数据进行交换 * * @author yw-tony * */ public clas ...
- chrome调试如何禁用浏览器缓存
0.写在前面的话 遇到过很多很多次,修改了页面代码,但是程序始终没有按照设想的方向走,有时候折腾了几个小时,发现问题最后却是莫名其妙恢复的.后来进一步调试发现,自己已经修改了如js代码,但是前端在载入 ...
- drupal 7 连接多个数据库
Drupal7系统,重写了数据库操作内核,其强大的功能无需多言.一次偶然的机会,需要提取Drupal默认安装数据库之外的一个数据库中的数据 ,可谓是绞尽脑汁,上网查阅最后终于找到了一个笨而又合适的方法 ...
- TortoiseSVN 只取下或更新部分文件的方法(Sparse Update/Sparse Checkout)
Sparse Update/Sparse Checkout To easily select only the items you want for the checkout and force ...
- Swoole Timer 的应用
目录 你好,Swoole Timer 应用场景 参考文档 你好,Swoole PHP 的协程高性能网络通信引擎,使用 C/C++ 语言编写,提供了多种通信协议的网络服务器和客户端模块. Swoole ...
- FakeID签名漏洞分析及利用(二)
本文转自:http://blog.csdn.net/l173864930/article/details/38409521 继上一次Masterkey漏洞之后,Bluebox在2014年7月30日又公 ...
- IP 解析器(IpParser) test 和 生产环境 实现
注意:之前我maven居然没有引入 StringUtils 的包,然后引入了一个路径类似,但其实包路径不一样的 StringUtils ,居然是划掉的状态,像这样 StringUtils ,这个其实不 ...
- Android 模拟输入那点事
因工作原因,需要用到模拟输入这个东东,查阅了一些资料,实现方式有多种,我大概分为两类,命令行类和程序类. 命令行类包括自动化测试组件monkeyrunner,getevent/setevent命令,i ...
- HashMap 源码解析(一)之使用、构造以及计算容量
目录 简介 集合和映射 HashMap 特点 使用 构造 相关属性 构造方法 tableSizeFor 函数 一般的算法(效率低, 不值得借鉴) tableSizeFor 函数算法 效率比较 tabl ...
- centos 7 git的管理和使用
一.linux 安装git (服务端) 1.首先创建用户账号 useradd zlx passwd zlx .... 2.创建目录git仓库 mkdir zlx_git.git 3.赋权限 chown ...