给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数。

点分治,这道题目和POJ 2114很接近,2114是求是否存在长度为K的边,但是那个K比较大。但是这道题目的K比之小了10倍。

1. 用V[i]表示到当前树根root的路径长度为i 时的点(赋值为root结点即可),这样就可以用来判断两条到根的路径长度之和是否等于K:

结点a的root的距离为i,结点b到root的距离为j,处理完a之后会得到V[i] = root,那么在处理结点b的时候,如果V[K-j] = root,就说明某一个a和b的路径长度为K,此时,就可以更新最小边数了。

2. e[i]表示到当前树根root的路径长度为i 时的边的最小条数。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
#define N 200010
#define inf 0x3f3f3f3f
struct node {
int v, l;
node() {}
node(int _v, int _l): v(_v), l(_l) {};
};
vector<node> g[N];
int n, K, cur, root, size, ans;
int s[N], f[N], d[N], e[N]; //s子树的结点数,f求重心,d子结点到根的距离,e子结点到根的边数
int v[N*10], c[N*10];
bool done[N]; void getroot(int now, int fa) {
int u;
s[now] = 1, f[now] = 0;
for (int i=0; i<g[now].size(); i++)
if ((u = g[now][i].v) != fa && !done[u]) {
getroot(u, now);
s[now] += s[u];
f[now] = max(f[now], s[u]);
}
f[now] = max(f[now], size-s[now]);
if (f[now] < f[root]) root = now;
}
void dfs1(int now, int fa) {
if (d[now] > K) return ;
if (v[K-d[now]] == cur) ans = min(ans, c[K-d[now]]+e[now]);
int u;
for (int i=0; i<g[now].size(); i++)
if ((u = g[now][i].v) != fa && !done[u]) {
d[u] = d[now] + g[now][i].l;
e[u] = e[now] + 1;
dfs1(u, now);
}
}
void dfs2(int now, int fa) {
if (d[now] > K) return ;
if (v[d[now]] != cur) {
c[d[now]] = e[now];
v[d[now]] = cur;
} else c[d[now]] = min(c[d[now]], e[now]);
int u;
for (int i=0; i<g[now].size(); i++)
if ((u = g[now][i].v) != fa && !done[u])
dfs2(u, now);
}
void work(int now) {
v[0] = cur = now + 1;
int u;
for (int i=0; i<g[now].size(); i++)
if (!done[u = g[now][i].v]) {
d[u] = g[now][i].l;
e[u] = 1;
dfs1(u, now);
dfs2(u, now);
}
getroot(now, n); //更新s数组
done[now] = true;
for (int i=0; i<g[now].size(); i++)
if (!done[u = g[now][i].v]) {
f[n] = size = s[u];
getroot(u, root=n);
work(root);
}
}
int main() {
scanf("%d%d", &n, &K);
for (int i=0; i<=n; i++) g[i].clear(); for (int i=1, a, b, c; i<n; i++) {
scanf("%d%d%d", &a, &b, &c);
g[a].push_back(node(b, c));
g[b].push_back(node(a, c));
}
memset(done, false, sizeof(done)); ans = f[n] = size = n;
getroot(0, root=n);
work(root); printf("%d\n", ans < n ? ans : -1); return 0;
}

BZOJ 2599 [IOI2011]Race【Tree,点分治】的更多相关文章

  1. bzoj 2599 [IOI2011]Race (点分治)

    [题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...

  2. bzoj 2599: [IOI2011]Race【点分治】

    点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p]) 这里注意更新和初 ...

  3. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  4. bzoj 2599 [IOI2011]Race 点分

    [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 4768  Solved: 1393[Submit][Status][Dis ...

  5. bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)

    题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...

  6. 【刷题】BZOJ 2599 [IOI2011]Race

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  7. BZOJ 2599: [IOI2011]Race

    点分治,定权值,求另一关键字最小 不满足前缀加减性 可以按序遍历,用一数组$t[] 来维护路径为i的最小边数$ 再对于一个直系儿子对应的子树,先算距离求答案再更新$t数组,这样就不会重复$ #incl ...

  8. 2599: [IOI2011]Race

    2599: [IOI2011]Race 链接 分析 被memset卡... 点分治,对于重心,遍历子树,记录一个数组T[i],表示以重心为起点的长度为i的路径中最少的边数是多少.然后先遍历子树,更新答 ...

  9. 【BZOJ】2599: [IOI2011]Race 点分治

    [题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...

随机推荐

  1. nodejs--express开发个人博客(2)

    上一部分已经实现了视图的雏形,现在加上逻辑操作. 登陆.注册.文章发表都需要用到数据库的数据存取,用的比较多的就是mongodb了. MongoDB 是一个对象数据库,它没有表.行等概念,也没有固定的 ...

  2. 关于COOKIE使用过程为NULL

    关于COOKIE使用过程中的一个小问题在程序中要用到COOKIE,网站website/login/login.aspx传值userID到 website/web/tab/web.aspx中的FRAME ...

  3. poj 2001 Shortest Prefixes(字典树)

    题目链接:http://poj.org/problem?id=2001 思路分析: 在Trie结点中添加数据域childNum,表示以该字符串为前缀的字符数目: 在创建结点时,路径上的所有除叶子节点以 ...

  4. c语言编写经验逐步积累4

    寥寥数笔,记录我的C语言盲点笔记,仅仅为以前经历过,亦有误,可交流. 1.逻辑表达式的使用 取值 = 表达式 ? 表达式1:表达式2: 比方x = y > z ? y:z 2."+,- ...

  5. [python网络编程]DNSserver

    在上一篇中,使用scrapy改动源IP发送请求的最后我们提到因为hosts文件不支持正则,会导致我们的随机域名DNS查询失败. 使用DNS代理服务器能够解决问题, 以下是我用gevent写的小工具.非 ...

  6. OFbiz--HelloWorld

    上篇博客<OFbiz--简单介绍>我们介绍了OFbiz是什么,以下我们就開始用OFbiz开发我们的第一个程序--HelloWorld. 过程例如以下: 首先在hot-deploy下新建文件 ...

  7. gcc代码反汇编查看内存分布[1]: gcc

    # gcc -vgcc version 4.4.5 (Ubuntu/Linaro 4.4.4-14ubuntu5) 重点: 代码中的内存分配, 地址从低到高: 代码段(RO, 保存函数代码) --&g ...

  8. BZOJ 1823: [JSOI2010]满汉全席( 2-sat )

    2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...

  9. 基本的编程原则SOLID

    1.单一职责原则:每个类只负责完成一个职责,当它需要完成多个职责时就需要将它拆分开来. 2.开放封闭原则:对扩展开放,对修改封闭. 3.里氏替换原则:子类对象可以替换(代替)它的所有父类(超类)对象. ...

  10. Python之路:Python 函数

    一.函数式编程:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装 二. 函数的定义和使用 def 函数名(参数): ... 函数体 ... 函数的定义主要有 ...