Common Subsequence
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 45763   Accepted: 18737

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0
题目大意:给你两个字符串,求两个字符串最长公共子串的长度,结合题意应该很容易理解题意。
思路分析:啥也不说,经典DP,首先确定状态以及状态的储存方法,用一个二维数组f[n][n]来进行储存,f[i][j]表示第一个字符串的前i位与后一个字符串的前j位最长公共
子序列长度,然后需要思考状态如何进行转移,若s1[i]==s2[j],f[i][j]=f[i-1][j-1]+1;若s1[i]!=s2[j],则f[i][j]应该与f[i][j-1]或者f[i-1][j]一致,具体
看那一个大,即f[i][j]=max{f[i][j-1],f[i-1][j]},这样状态转移方程也确定了。在代码实现的时候需要注意几点,首先字符串长度并没有给你,开到210就可以了,另外
初始状态要合理进行处理,否则会出现数组越界的错误!
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <cmath>
using namespace std;
const int maxn=210;
char s1[maxn],s2[maxn];
int dp[maxn][maxn];
int main()
{
    int i,j;
    while(scanf("%s%s",s1,s2)!=EOF)
    {
        int l1=strlen(s1);
        int l2=strlen(s2);
        for(i=0;i<l1;i++)
        {
            for(j=0;j<l2;j++)
            {
                if(s1[i]==s2[j])
                {
                    if(i>=1&&j>=1) dp[i][j]=dp[i-1][j-1]+1;
                    else dp[i][j]=1;
                }
                else
                {
                    if(i>=1&&j>=1) dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                    else if(j>=1) dp[i][j]=dp[i][j-1];
                    else if(i>=1) dp[i][j]=dp[i-1][j];
                    else dp[i][j]=0;
               }
            }
        }
        int t=dp[0][0];
        for(i=0;i<l1;i++)
            for(j=0;j<l2;j++)
          if(t<dp[i][j]) t=dp[i][j];
        cout<<t<<endl;
    }
    return 0;
}
—

poj1458 求最长公共子序列 经典DP的更多相关文章

  1. HDU 4681 string 求最长公共子序列的简单DP+暴力枚举

    先预处理,用求最长公共子序列的DP顺着处理一遍,再逆着处理一遍. 再预处理串a和b中包含串c的子序列,当然,为了使这子序列尽可能短,会以c 串的第一个字符开始 ,c 串的最后一个字符结束 将这些起始位 ...

  2. Java实现 LeetCode 583 两个字符串的删除操作(求最长公共子序列问题)

    583. 两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例: 输入: " ...

  3. [algorithm]求最长公共子序列问题

    最直白方法:时间复杂度是O(n3), 空间复杂度是常数 reference:http://blog.csdn.net/monkeyandy/article/details/7957263 /** ** ...

  4. HDU 1243 反恐训练营 (动态规划求最长公共子序列)

    反恐训练营 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  5. 【dp】求最长公共子序列

    [题目描述] 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X=<x1,x2,…,xm>X=<x1,x2,…,xm>,则另一序列Z=<z1 ...

  6. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  7. P1439 【模板】最长公共子序列(DP)

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

  8. POJ-1458(LCS:最长公共子序列模板题)

    Common Subsequence POJ-1458 //最长公共子序列问题 #include<iostream> #include<algorithm> #include& ...

  9. 洛谷 P1439 【模板】最长公共子序列(DP,LIS?)

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

随机推荐

  1. BestCoder Round #81 (div.2)1001

    Machine Accepts: 580 Submissions: 1890 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  2. vc 获取当前时间

    1.使用CTime类 CString str; //获取系统时间 CTime tm; tm=CTime:: GetCurrentTime_r(); str=tm.Format("现在时间是% ...

  3. NAS4Free 安装配置(五)配置SMB

    配置SMB 现在我们有2块存储设备,一块做下载盘,一块做数据盘 为了便于管理和扩展,我们分别在两块盘上建文件夹和Dataset 对于download盘,因为是UFS,所以只能建文件夹 我们把整个盘共享 ...

  4. AngularJS中的控制器示例

    <!doctype html> <html ng-app="myApp"> <head> <script src="C:\\Us ...

  5. gtest编译小结(ubuntu 12.10 , gtest 1.6.0)

    1 下载源码,解压之当前用户的主目录(~/) 2 进入make目录,执行make命令 cd ~/gtest-/make make 3 在ubuntu里编译出错,提示找不到lthread库.修改Make ...

  6. CloudStack核心类ApiServlet、ApiServer、ApiDispatcher、GenericDaoBase源码分析

    ApiServlet 首先从整体上看下ApiServlet,Outline视图如下, 一.注意@Inject依赖的是javax.inject.jar,它和spring的@Autowired的区别在于使 ...

  7. IP防护等级

    IP(INGRESS PROTECTION)防护等级系统是由IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草,将电器依其防尘防湿气之特性加以分级.这里 ...

  8. 【转】将 Linux 应用程序移植到 64 位系统上

    原文网址:http://www.ibm.com/developerworks/cn/linux/l-port64.html 随着 64 位体系结构的普及,针对 64 位系统准备好您的 Linux® 软 ...

  9. CentOS6.4安装mplayer

    1.准备软件 mplayer官网:http://www.mplayerhq.hu/design7/news.html RPM Fusion网址:http://rpmfusion.org/ EPEL网址 ...

  10. 沙湖王 | 用Scipy实现K-means聚类算法

    沙湖王 | 用Scipy实现K-means聚类算法 用Scipy实现K-means聚类算法