bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推了一个多小时终于发现了一个很巧妙的方法,首先问题的关键在于后半个式子,因为显然前半个式子很容易想到卷积的形式,那么直接FFT就好了,但是后半部分不好考虑,一般肯定是通过类似换元的做法化到后来得出结论,到中间有一步就有点难度,那个地方我一直卡。后来突然想到,既然前半部分i<j时那么好处理,那么i>j的情况我把i和j分别用(n-i)和(n-j)代入不就转化过去了,然后直接就会发现他是卷积后的第(n-i)项,所以后面一半需要反转a数组和反转结果数组,这里要注意下标,第二部分,第0项对应第n-1项。
$E_i=\sum_{j<i} \frac{q_j}{(j-i)^2}-\sum_{j>i} \frac{q_j}{(j-i)^2}$
$E_i=\sum_{j<i} \frac{q_j}{(j-i)^2}-\sum_{n-j<n-i} \frac{q_{n-j}}{((n-j)-(n-i))^2}$
$E_i=\sum_{j<i} \frac{q_j}{(i-j)^2}-\sum_{n-j<n-i} \frac{q_{n-j}}{(j-i)^2}$
$E_i=f[j]\ast g[i-j]-f[n-j]\ast g[j-i]=c[i]-c^{'}[n-i]$
代码:
#include<bits/stdc++.h>
#include<complex>
#define db double
#define ll long long
#define mp make_pair
#define fi first
#define pb push_back
#define se second
#define rep(i,a,b)for(int i=a;i<=b;i++)
using namespace std;
const double pi=acos(-1);
const int maxn=5e5+7;
db spt(db x){return x*x;}
int r[maxn];
complex<double>a[maxn],b[maxn],c[maxn],d[maxn];
db ans[maxn];
int M,N,n,l=0;
db p[maxn];
void FFT(complex<double> f[],int op)
{
for(int i=0;i<N;i++)if(i<r[i])swap(f[i],f[r[i]]);
for(int i=1;i<N;i<<=1)
{
complex<double >w(cos(pi/i),op*sin(pi/i));
for(int p=(i<<1),j=0;j<N;j+=p)
{
complex<double>W(1,0);
for(int k=0;k<i;k++,W*=w)
{
complex<double>x=f[j+k],y=W*f[j+i+k];
f[j+k]=x+y;f[j+k+i]=x-y;
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf",&p[i]);
}
N=M=n-1;
for(int i=0;i<n;i++){a[i]=p[i+1];if(i>=1)b[i]=1.0/spt(i);}
M+=N;
for(N=1;N<=M;N<<=1)l++;
for(int i=0;i<N;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);FFT(b,1);
for(int i=0;i<=N;i++)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<n;i++)ans[i]+=a[i].real()*1.0/N;
for(int i=0;i<n;i++){c[i]=p[n-i];if(i>=1)d[i]=1/spt(i);}
FFT(c,1);FFT(d,1);
for(int i=0;i<=N;i++)c[i]=c[i]*d[i];
FFT(c,-1);
for(int i=0;i<n;i++)ans[i]-=c[n-i-1].real()*1.0/N;
for(int i=0;i<n;i++)printf("%.3lf\n",ans[i]); return 0; }
PS:终于用上latex了,好不适应,,还不会用。
bzoj3527: [Zjoi2014]力 卷积+FFT的更多相关文章
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
- [BZOJ3527][ZJOI2014]力:FFT
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- [ZJOI2014]力(FFT)
[Luogu3338] [BZOJ5327] (DarkBZOJ数据有问题) \(19.3.8\) 前置知识:[知乎-如何通俗易懂地解释卷积] [FFT详解] \(1.\)卷积定义 我们称 \((f* ...
随机推荐
- (最完美)小米平板3的USB调试模式在哪里开启的流程
经常我们使用安卓手机链上电脑的时候,或者使用的有些应用软件比如我们公司营销小组经常使用的应用软件引号精灵,之前的老版本就需要开启usb调试模式下使用,现经常新版本不需要了,如果手机没有开启usb调试模 ...
- python集合使用范例的代码
在代码过程中中,将代码过程中比较好的代码段珍藏起来,如下的代码是关于python集合使用范例的代码,希望能对大伙有用. # sets are unordered collections of uniq ...
- Android 图片Bitmap,drawable,res资源图片之间转换
一.知识介绍 ①res资源图片是放在项目res文件下的资源图片 ②BitMap位图,一般文件后缀为BMP,需要编码器编码,如RGB565,RGB8888等.一种逐像素的显示对象,其执行效率高,但缺点也 ...
- .NET MVC全局异常处理(一)
目录 .NET MVC全局异常处理 IIS配置 静态错误页配置 .NET错误页配置 程序设置 全局异常配置 .NET MVC全局异常处理 一直知道有.NET有相关的配置,但没有实际做过,以为改下设定就 ...
- Python基础之协程
阅读目录 一 引子 二 协程介绍 三 Greenlet模块 四 Gevent模块 引子 之前我们学习了线程.进程的概念,了解了在操作系统中 进程是资源分配的最小单位,线程是CPU调度的最小单位. 按道 ...
- 总结JAVA----IO流中的File类
对于IO流中File类的总结 File类的基本概念 File类只能用于完成对于文件属性(是否存在.可读性.长度)的一些操作,不能用于文件的访问. File类的对象 File类的对象存储的是文件的绝对路 ...
- realm swift调研--草稿
realm swift调研: After you have added the object to the Realm you can continue using it, and all chang ...
- 数据库的设计:深入理解 Realm 的多线程处理机制
你已经阅读过 Realm 关于线程的基础知识.你已经知道了在处理多线程的时候你不需要关心太多东西了,因为强大的 Realm 会帮你处理好这些,但是你还是很想知道更多细节…… 你想知道在 Realm 的 ...
- JavaScript代码组织结构良好的5个特点
JavaScript代码组织结构良好的5个特点,随着JavaScript项目的成长,如果你不小心处理的话,他们往往会变得难以管理.我们发现自己常常陷入的一些问题: 当在创建新的页面时发现,很难重用或测 ...
- Linux soft lockup分析
关键词:watchdog.soft lockup.percpu thread.lockdep等. 近日遇到一个soft lockup问题,打印类似“[ 56.032356] NMI watchdog: ...