题目类型:三维前缀和+同余方程

传送门:>Here<

题意:给出一个立方体,求有多少个子立方体的和为\(k\)的倍数

解题思路

暴力做法:\(O(n^6)\)枚举子立方体

考虑只枚举长和宽,为了简化问题,我们可以将问题表示成:

给定一个矩阵,求有多少个子矩阵的和为\(M\)的倍数

我们可以不必枚举宽,仅仅用\(O(n^2)\)枚举长,然后对于给定的行数,维护一个前缀和\(s[i]\)。于是一个子矩阵的和就可以表示为\(s[r]-s[l-1]\)。考虑一下何时这个子矩阵是\(M\)的倍数?用同余方程描述,就是$$s[r]-s[l-1]≡0 \ (mod \ M)$$也就是$$s[l-1]≡s[r] \ (mod \ M)$$于是我们只需要维护一个桶表示目前为止\(s[r]==i\)的个数就可以了

推广到立方体,改一下前缀和的计算公式就可以了

\(s[i][j][k] = s[i-1][j][k] + s[i][j-1][k] - s[i-1][j-1][k] + s[i][j][k-1] - s[i-1][j][k-1] - s[i][j-1][k-1] + s[i-1][j-1][k-1] + a[i][j][k]\)

反思

注意这道题问的是\(M\)的倍数,有关和,而且涉及倍数——一个前缀和,一个数论,就都可以解决了。

Code

注意循环变量的初始值。由于如果每次把桶清零非常耗时,一个优化是只清当前这轮涉及到的。当前这轮最多涉及到\(N\)个,因此非常快。

/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 10010;
const int MAXM = 20010;
const int INF = 1061109567;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
ll Ans;
int N,M,K;
int a[45][45][45],s[45][45][45],sum[45],cnt[1000010];
int main(){
// freopen(".in","r",stdin);
N = read(), M = read();
for(int i = 1; i <= N; ++i){
for(int j = 1; j <= N; ++j){
for(int k = 1; k <= N; ++k){
a[i][j][k] = read();
s[i][j][k] = ((s[i-1][j][k] + s[i][j-1][k] - s[i-1][j-1][k] + s[i][j][k-1] - s[i-1][j][k-1] - s[i][j-1][k-1] + s[i-1][j-1][k-1] + a[i][j][k]) % M + M) % M;
}
}
}
for(int i = 1; i <= N; ++i){
for(int j = i; j <= N; ++j){
for(int p = 1; p <= N; ++p){
for(int q = p; q <= N; ++q){
cnt[0] = 1;
for(int k = 1; k <= N; ++k){
sum[k] = ((s[j][q][k]-s[i-1][q][k]-s[j][p-1][k]+s[i-1][p-1][k]) % M + M) % M;
Ans += 1ll * cnt[sum[k]];
cnt[sum[k]]++;
}
for(int k = 1; k <= N; ++k) cnt[sum[k]] = 0;
}
} }
}
printf("%lld", Ans);
return 0;
}

[SCOI2006] 数字立方体的更多相关文章

  1. Project Euler 90:Cube digit pairs 立方体数字对

    Cube digit pairs Each of the six faces on a cube has a different digit (0 to 9) written on it; the s ...

  2. 《Python核心编程》 第五章 数字 - 课后习题

    课后习题  5-1 整形. 讲讲 Python 普通整型和长整型的区别. 答:普通整型是绝大多数现代系统都能识别的. Python的长整型类型能表达的数值仅仅与你机器支持的(虚拟)内存大小有关. 5- ...

  3. 基于css3新属性transform及原生js实现鼠标拖动3d立方体旋转

    基于css3新属性transform,实现3d立方体的旋转 通过原生JS,点击事件,鼠标按下.鼠标抬起和鼠标移动事件,实现3d立方体的拖动旋转,并将旋转角度实时的反应至界面上显示 实现原理:通过获取鼠 ...

  4. BZOJ 1261: [SCOI2006]zh_tree( 区间dp )

    dp(l, r)表示[l, r]这段作为一棵树的最小访问代价. 对于dp(l, r), 我们枚举它的根x, 则dp(l, r) = min(dp(l, x-1)+dp(x+1, r)+C*fx) + ...

  5. HTML5 CSS3 诱人的实例: 3D立方体旋转动画

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/34120047 创意来自:http://www.html5tricks.com/d ...

  6. CSS3之3D立方体效果

    下面代码可实现3D立方体,比较好理解,就是让每个面先平移到指定位置,然后旋转90度 <!DOCTYPE html> <html lang="en"> < ...

  7. bzoj千题计划184:bzoj1261: [SCOI2006]zh_tree

    http://www.lydsy.com/JudgeOnline/problem.php?id=1261 dp[l][r][dep]  区间[l,r]内的节点,根在dep层的最小代价 枚举根i,dp[ ...

  8. 数字图像处理笔记与体会(一)——matlab编程基础

    最近开始学习数字图像处理,使用matlab实现,下面我就来记录笔记和体会,一方面是给大家提供参考,另一方面是防止我忘记了. 复习一下: 1.数字图像是用一个数字矩阵来表示的,数字阵列中的每个数字,表示 ...

  9. 仿智能社官网:原生JS实现简单又酷炫的3D立方体时钟

    先放一下我做的效果:https://linrunzheng.github.io/3Dclock/3Dclock/new.html 至于3D立方体怎么做这里就不在阐述了,可以看一下我之前的博客. 这里默 ...

随机推荐

  1. Shell基础命令(一)

    Shell 教程 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计语言. Shell 是指一种应用程序,这个应用程序提供了一个 ...

  2. Registrator中文文档

    目录 快速入门 概述 准备 运行Registrator 运行Redis 下一步 运行参考 运行Registrator Docker选项 Registrator选项 Consul ACL令牌 注册URI ...

  3. iOS ----------NSDate 、CFAbsoluteTimeGetCurrent、CACurrentMediaTime 的区别

    框架层: NSDate 属于Foundation CFAbsoluteTimeGetCurrent() 属于 CoreFoundatio CACurrentMediaTime() 属于 QuartzC ...

  4. Android开发如何轻松实现基于Tesseract的Android OCR应用程序

    介绍 此应用程序使用Tesseract 3的Tesseract OCR引擎,该引擎通过识别字符模式( https://github.com/tesseract-ocr/tesseract )来工作. ...

  5. PJSUA2开发文档--第七章 呼叫 Calls类

    7   呼叫Calls 呼叫由Call类处理 7.1 子类化Call类 要使用Call类,应用程序应创建子类,如: class MyCall : public Call { public: MyCal ...

  6. 浅谈TCP IP协议栈(二)IP地址

    上一节大致了解TCP/IP协议栈是个啥东西,依旧是雾里看花的状态,有很多时候学一门新知识时,开头总是很急躁,无从下手,刚学会一点儿,却发现连点皮毛都不算,成就感太低,所以任何时候学习最重要的是要在合适 ...

  7. iOS MVVM架构总结

    为什么使用MVVM iOS中,我们使用的大部分都是MVC架构.虽然MVC的层次明确,但是由于功能日益的增加.代码的维护,使得更多的代码被写在了Controller中,这样Controller就显得非常 ...

  8. LeetCode算法题-Detect Capital(Java实现)

    这是悦乐书的第251次更新,第264篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第118题(顺位题号是520).给定一个单词,你需要判断其中大写字母的使用是否正确.当下 ...

  9. No FileSystem for scheme: hdfs问题

    通过FileSystem.get(conf)初始化的时候,要通过静态加载来实现,其加载类的方法代码如下: private static FileSystem createFileSystem(URI ...

  10. [LeetCode] 12,13 整数和罗马数互转

    12. 整数转罗马数字 题目链接:https://leetcode-cn.com/problems/integer-to-roman/ 题目描述: 罗马数字包含以下七种字符: I, V, X, L,C ...