<更新提示>

<第一次更新>


<正文>

宝藏(NOIP2017)

Description

参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度。

小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。

小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。

新开发一条道路的代价是:

\[L×K
\]

L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。

请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。

Input Format

第一行两个用空格分离的正整数 n,m,代表宝藏屋的个数和道路数。

接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1−n),和这条道路的长度 v。

Output Format

一个正整数,表示最小的总代价。

Sample Input

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1

Sample Output

4

解析

简单概括题意:给出一副无向图,每条边都有一个权值且均未开通,先可以随便取一个起点,要开通一些边,使它成为一个连通图,开通一条边的代价为这条边的权值*起点到它的点的个数(起点也算),求最小代价。

数据范围\(N<=12\),基本上可以确定是状压\(DP\)了。我们直接最简单地设置状态:\(f[S]\)代表以及取的节点的状态为S的最小代价,那么目标状态就是\(f[(1<<n)-1]\)。

如果考虑递推求解的话,我们发现需要计算花费的深度会很难枚举,这就导致了\(DP\)顺序的问题,如果选择用记忆化搜索求解的话,会方便很多。

由于起点不是确定的,我们需要用一重循环来枚举起点,然后以\(1<<(root-1)\)为初始状态,对每一种情况进行一次记忆化搜索,记搜的大体思路如下:

1.对于状态\(S\),枚举一个点\(i\),满足\(i \in S\)

2.在枚举一个点\(j\),满足\(i,j\)有边相连且\(j \notin S\)

3.状态转移方程:\(f[S']=min{f[S]+depth[i]*dis[i][j]}\)

4.更新新加入的节点j的深度

5.搜索下一个状态\(S'\)

6.回溯还原节点j的深度

最后在每一种情况的目标状态中取个\(min\)就是最终的答案了,时间复杂度\(O(n^32^n)\)。

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
const int N=15,M=10015,Smax=(1<<N)+20,INF=0x3f3f3f3f;
int n,m,dis[N][N],f[Smax],depth[N],ans=INF;
inline void input(void)
{
memset(dis,0x3f,sizeof dis);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int u,v,val;
scanf("%d%d%d",&u,&v,&val);
dis[u][v]=dis[v][u]=min(dis[u][v],val);
}
}
inline void Search(int S)
{
for(int i=1;i<=n;i++)
{
if((1<<(i-1))&S)
{
for(int j=1;j<=n;j++)
{
if(not ((1<<(j-1))&S)&&(dis[i][j]<INF))
{
if(f[S|(1<<(j-1))]>f[S]+depth[i]*dis[i][j])
{
int temp=depth[j];
depth[j]=depth[i]+1;
f[S|(1<<(j-1))]=f[S]+depth[i]*dis[i][j];
Search(S|(1<<(j-1)));
depth[j]=temp;
}
}
}
}
}
}
inline void solve(void)
{
for(int root=1;root<=n;root++)
{
memset(f,0x3f,sizeof f);
memset(depth,0x3f,sizeof depth);
f[1<<(root-1)]=0;
depth[root]=1;
Search(1<<(root-1));
ans=min(ans,f[(1<<n)-1]);
}
}
int main(void)
{
input();
solve();
printf("%d\n",ans);
}

<后记>

『宝藏 状态压缩DP NOIP2017』的更多相关文章

  1. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  2. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

  3. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  4. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  5. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  6. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  7. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  8. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  9. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

随机推荐

  1. C#代码总结04---通过创建临时表DataTable进行临时编辑删除

    <script type="text/javascript"> //删除 function Delete(hdGuid) { $("#hdGuid" ...

  2. PBRT笔记(8)——材质

    BSDF类 表面着色器会绑定场景中每一个图元(被赋予了这个着色器),而表面着色器则由Material类的实例来表示.它会拥有一个BSDF类对象(可能是BSSDF),用于计算表面上每一点的辐射度(颜色) ...

  3. Codechef April Challenge 2019 游记

    Codechef April Challenge 2019 游记 Subtree Removal 题目大意: 一棵\(n(n\le10^5)\)个结点的有根树,每个结点有一个权值\(w_i(|w_i\ ...

  4. Spark集群部署(standLone)模式

      安装部署: 1. 配置spark为1个master,2个slave的独立集群(Standlone)模式, 可以在VMWare中构建3台运行Ubuntu的机器作为服务器: master主机配置如下: ...

  5. BZOJ 4665

    orz gery 一发rk1真有趣(其实我没想着常数优化 inline int sqr(int x){return 1ll*x*x%mo;} const int N=2011; int n,a[N], ...

  6. C# 计算地图上某个坐标点的到多边形各边的距离

    在判断了某个坐标点是否在多边形内后,还有另一个需求就是当我这个坐标点在多边形外部时,我需要计算这个坐标点到多边形的距离是否在一个允许的误差范围内 通过两个位置的经纬度坐标计算距离(C#版本) 转自:h ...

  7. java拦截处理System.exit(0)

    在使用TestNG做单元测试时,需要测试的代码中出现System.exit(0),导致单元测试还未结束程序就停止了.解决方法如下: public class TestMain { public sta ...

  8. mysql数据库索引调优

    一.mysql索引 1.磁盘文件结构 innodb引擎:frm格式文件存储表结构,ibd格式文件存储索引和数据. MyISAM引擎:frm格式文件存储表结构,MYI格式文件存储索引,MYD格式文件存储 ...

  9. linux虚机配置开发/Server环境全集

    linux虚机配置开发/Server环境全集 9. centos 升级githttp://www.cnblogs.com/grimm/p/5368777.htmla. 下载git2.2.1并将git添 ...

  10. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...