『宝藏 状态压缩DP NOIP2017』
<更新提示>
<第一次更新>
<正文>
宝藏(NOIP2017)
Description
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
\]
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
Input Format
第一行两个用空格分离的正整数 n,m,代表宝藏屋的个数和道路数。
接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1−n),和这条道路的长度 v。
Output Format
一个正整数,表示最小的总代价。
Sample Input
4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1
Sample Output
4
解析
简单概括题意:给出一副无向图,每条边都有一个权值且均未开通,先可以随便取一个起点,要开通一些边,使它成为一个连通图,开通一条边的代价为这条边的权值*起点到它的点的个数(起点也算),求最小代价。
数据范围\(N<=12\),基本上可以确定是状压\(DP\)了。我们直接最简单地设置状态:\(f[S]\)代表以及取的节点的状态为S的最小代价,那么目标状态就是\(f[(1<<n)-1]\)。
如果考虑递推求解的话,我们发现需要计算花费的深度会很难枚举,这就导致了\(DP\)顺序的问题,如果选择用记忆化搜索求解的话,会方便很多。
由于起点不是确定的,我们需要用一重循环来枚举起点,然后以\(1<<(root-1)\)为初始状态,对每一种情况进行一次记忆化搜索,记搜的大体思路如下:
1.对于状态\(S\),枚举一个点\(i\),满足\(i \in S\)
2.在枚举一个点\(j\),满足\(i,j\)有边相连且\(j \notin S\)
3.状态转移方程:\(f[S']=min{f[S]+depth[i]*dis[i][j]}\)
4.更新新加入的节点j的深度
5.搜索下一个状态\(S'\)
6.回溯还原节点j的深度
最后在每一种情况的目标状态中取个\(min\)就是最终的答案了,时间复杂度\(O(n^32^n)\)。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
const int N=15,M=10015,Smax=(1<<N)+20,INF=0x3f3f3f3f;
int n,m,dis[N][N],f[Smax],depth[N],ans=INF;
inline void input(void)
{
memset(dis,0x3f,sizeof dis);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int u,v,val;
scanf("%d%d%d",&u,&v,&val);
dis[u][v]=dis[v][u]=min(dis[u][v],val);
}
}
inline void Search(int S)
{
for(int i=1;i<=n;i++)
{
if((1<<(i-1))&S)
{
for(int j=1;j<=n;j++)
{
if(not ((1<<(j-1))&S)&&(dis[i][j]<INF))
{
if(f[S|(1<<(j-1))]>f[S]+depth[i]*dis[i][j])
{
int temp=depth[j];
depth[j]=depth[i]+1;
f[S|(1<<(j-1))]=f[S]+depth[i]*dis[i][j];
Search(S|(1<<(j-1)));
depth[j]=temp;
}
}
}
}
}
}
inline void solve(void)
{
for(int root=1;root<=n;root++)
{
memset(f,0x3f,sizeof f);
memset(depth,0x3f,sizeof depth);
f[1<<(root-1)]=0;
depth[root]=1;
Search(1<<(root-1));
ans=min(ans,f[(1<<n)-1]);
}
}
int main(void)
{
input();
solve();
printf("%d\n",ans);
}
<后记>
『宝藏 状态压缩DP NOIP2017』的更多相关文章
- 『最短Hamilton路径 状态压缩DP』
状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...
- 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- 使用loadrunner录制手机脚本
1.安装loadrunner补丁包4: 2.安装了loadrunner的PC端上面创建WiFi热点,将手机接入该WiFi: 3.然后打开loadrunner,选择录制协议为手机的协议: 4.弹窗中选择 ...
- 权限的控制 shiro的使用
******shiro的使用 三大核心组件 Subject:即当前用户,在权限管理的应用程序里往往需要知道谁能够操作什么,谁拥有操作该程序的权利,shiro中则需要通过Subject来提供基础的当前用 ...
- unity下贴图混合(Texture Blending)
在unity制作自定义时,经常会遇到自定义妆容等问题,美术会提供大量的眉毛/胡子/腮红等贴图,来供用户选择. 美术给出的眉毛的小贴图如下: 在用户选用不同的胡子眉毛,可以将选定的小贴图和皮肤base贴 ...
- ftp无法上传问题
1.背景 ftp服务端和客户端一直未做任何改动,无法上传属于突发状态,除此客户端外其他客户端上传正常 客户端(SunOS系统)可以正常连接ftp的xxx21端口,但是传输数据(文件)时无法正常传输 上 ...
- websocket与ajax的区别浅析
1.本质不同 Ajax,即异步JavaScript和XML,是一种创建交互式网页应用的网页开发技术: WebSocket是HTML5一种新的协议,实现了浏览器与服务器全双工通信.其本质是先通过HT ...
- python3.5.2库getpass
getpass的功能是:允许隐式的输入字符串 import getpass _username='vigossr' _password='haha' username=input('username: ...
- Git SSL公钥密钥生成
下面教大家简单易懂的五步配置好密钥 第一次配置ssh 和ssl git config --global --list 查看git的配置 步骤: 1. git config --global user. ...
- Go语言基础之函数
Go语言基础之函数 函数是组织好的.可重复使用的.用于执行指定任务的代码块.本文介绍了Go语言中函数的相关内容. 函数 Go语言中支持函数.匿名函数和闭包,并且函数在Go语言中属于“一等公民”. 函数 ...
- python枚举类型
笔记: 一:枚举类型的定义二:枚举类和普通类的区别 1:值不可变 2:具有防止相同标签得功能,不同标签的值可以相同! 三:枚举类型.枚举值.枚举名称 1:VIP.YELLOW.Value 获得标签的值 ...
- mysql5.7忽略大小写问题
mysql5.7忽略大小写问题 1.1 前言 新安装mysql5.7版本后,linux环境下默认是大小写敏感的. 1.2 忽略大小写敏感步骤 进入mysql配置文件: vi /et ...