1.  R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0,1\mbox{ 分别表示越过激波前、后状态}), \eex$$ 其等价于

(1)  $u_->u_+$ ($-$, $+$ 分别表示左、右状态);

(2)  $p_1>p_0$ (激波是压缩的);

(3)  Lax 的激波不等式 (熵不等式、熵条件): 对某个 $k\in \sed{1,2,3}$, $$\bex \lm_k(u_+,c_+)<U<\lm_k(u_-,c_-),\quad \lm_{k-1}(u_-,c_)<U<\lm_{k+1}(u_+,c_+). \eex$$ (满足上述 Lax 不等式的称为 $k$ 激波).

2.  对一维气体动力学方程组而言, 容易由 R.H. 条件知其不存在 $2$-激波, 右传播 $1$-激波, 和左传播 $3$-激波.

[物理学与PDEs]第2章第4节 激波 4.2 熵条件的更多相关文章

  1. [物理学与PDEs]第2章第4节 激波 4.1 间断连接条件

    1.  守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfra ...

  2. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  3. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  4. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  7. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

随机推荐

  1. 设置TextBlock默认样式后,其他控件的Text相关属性设置失效问题

    问题: 定义了默认TextBlock样式后,再次自定义下拉框 or 其他控件 ,当内部含有TextBlock时,设置控件的字体相关样式无效,系统始终使用TextBlock设置默认样式 解决方案: 为相 ...

  2. android的listview以及画线--to thi tha

    https://www.cnblogs.com/896240130Master/p/6135165.html 这个的 https://www.jianshu.com/p/5522470760c1

  3. How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue

    Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...

  4. $.extend()浅拷贝深拷贝

    参考网址:http://bijian1013.iteye.com/blog/2255037 jQuery.extend() 函数用于将一个或多个对象的内容合并到目标对象. 注意:1. 如果只为$.ex ...

  5. vue 组件中的钩子函数 不能直接写this

    export default { data(){ return { num: 18 } }, beforeRouteEnter(to, from, next){ next(vm=>{ vm.nu ...

  6. ubuntu添加普通用户,并解决远程登录

    创建普通用户 # 创建用户,并指定用户目录,加入用户组sudo useradd username -d /home/username -m #设置密码 sudo passwd username #给用 ...

  7. 解读 IoC 框架 InversifyJS

    原文链接 InversityJS 是一个 IoC 框架.IoC(Inversion of Control) 包括依赖注入(Dependency Injection) 和依赖查询(Dependency ...

  8. Grunt自动化构建环境搭建

    1.环境准备 需要安装Git.Node.Bower.Grunt.Ruby NodeJS https://nodejs.org/en/ Ruby    http://rubyinstaller.org/ ...

  9. EasyUI datagrid formatter 属性

    easyui的formatter属性可以帮助我们更加灵活的显示数据库中的数据. 比如,我有一个启用禁用字段,使用数字表示,1表示启用,2表示禁用,展示给客户的时候我当然希望是中文的形式. 只需要写这么 ...

  10. Scrapy中选择器的用法

    官方文档:https://doc.scrapy.org/en/latest/topics/selectors.html Using selectors Constructing selectors R ...