1.  R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0,1\mbox{ 分别表示越过激波前、后状态}), \eex$$ 其等价于

(1)  $u_->u_+$ ($-$, $+$ 分别表示左、右状态);

(2)  $p_1>p_0$ (激波是压缩的);

(3)  Lax 的激波不等式 (熵不等式、熵条件): 对某个 $k\in \sed{1,2,3}$, $$\bex \lm_k(u_+,c_+)<U<\lm_k(u_-,c_-),\quad \lm_{k-1}(u_-,c_)<U<\lm_{k+1}(u_+,c_+). \eex$$ (满足上述 Lax 不等式的称为 $k$ 激波).

2.  对一维气体动力学方程组而言, 容易由 R.H. 条件知其不存在 $2$-激波, 右传播 $1$-激波, 和左传播 $3$-激波.

[物理学与PDEs]第2章第4节 激波 4.2 熵条件的更多相关文章

  1. [物理学与PDEs]第2章第4节 激波 4.1 间断连接条件

    1.  守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfra ...

  2. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  3. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  4. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  7. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

随机推荐

  1. 数据库【mysql】之pymysql

    安装模块 pip install pymysql 导入模块 import pymysql 创建链接 conn = pymysql.connect(host=') 创建索引 cursor = conn. ...

  2. element 关闭弹窗时清空表单信息

    关闭弹窗时清空表单信息: // 弹框关闭时清空信息 closeDialog () { this.$nextTick(() => { this.$refs['createModelForm'].c ...

  3. Golang 入门系列(六)理解Go中的协程(Goroutine)

    前面讲的都是一些Go 语言的基础知识,感兴趣的朋友可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category/1275863.html. 今天就 ...

  4. Java 最常见的 200+ 面试题汇总

    这份面试清单是我从 2015 年做 TeamLeader 之后开始收集的,一方面是给公司招聘用,另一方面是想用它来挖掘我在 Java 技术栈中的技术盲点,然后修复和完善它,以此来提高自己的技术水平.虽 ...

  5. svn 钩子应用 - svn 提交字符限制, 不能为空

    一.版本库钩子 1.1 start-commit  开始提交的通知 输入参数:传递给你钩子程序的命令行参数,顺序如下: 1.  版本库路径 2.  认证过的尝试提交的用户名 3.  Depth,mer ...

  6. adb.exe 已停止工作 解决

    netstat -aon|findstr 5037tasklist /fi "PID eq 10388"TASKKILL /F /IM PPAdbServer.exe

  7. Each path can be reduced to a simple path

    Recently, I made a small conclusion, but I found it is found and well-founded in some textbook. So I ...

  8. [Alpha阶段]第五次Scrum Meeting

    Scrum Meeting博客目录 [Alpha阶段]第五次Scrum Meeting 基本信息 名称 时间 地点 时长 第五次Scrum Meeting 19/04/09 教1_2楼教室 65min ...

  9. 【转】IT行业岗位以及发展方向

    以下转自https://blog.csdn.net/qq_23994787/article/details/79847270 职业生涯规划的意义 1.以既有的成就为基础,确立人生的方向,提供奋斗的策略 ...

  10. Array.prototype.reduce()

    reduce() 方法接收一个函数作为累加器(accumulator),数组中的每个值(从左到右)开始缩减,最终为一个值. arr.reduce([callback, initialValue]) c ...