bzoj2839 集合计数(容斥)
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 883 Solved: 490
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
Source
这若干个集合的交集的方案数:$C(n,k)$
那么问题就转化成:对剩下的$m=n-k$个数,求集合取法,使它们之间没有交集
这种计数问题一般用容斥瞎搞
先求出$m$个数构成的集合的所有取法:$2^{2^{m}}-1$
共$2^{m}$个集合,每个集合可取可不取$(2^{2^{m}}\; )$,再减去一个都不取的情况$(-1)$(试试n=k的情况)
蓝后我们把交集$>=1$的取法减掉:$-C(m,1)*(2^{2^{m-1}\; }-1)$
但是我们发现有多减了交集$>=2$的取法,于是再加回来$+C(m,2)*(2^{2^{m-2}\; }-1)$
...............
这就是容斥原理计数的基本套路辣
于是答案为$C(n,k)*\sum_{i=0}^{m=n-k}\; \; \; (-1)^i*C(m,i)*(2^{2^{m-i}}-1)$
后面这个$2^{2^{m-i}}$咋算呢
注意到$2^{2^m}\; =2^{2^{m-1}}\; *2^{2^{m-1}}\; $
于是我们倒着枚举$i$,每次统计完平方以下就好辣
注意别爆int了鸭TAT
#include<iostream>//注意防爆int
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
#define N 1000005
const ll P=;
int n,k,m;ll ans,nw,inv[N],fac[N],ifac[N];
inline ll C(int a,int b){return fac[a]*ifac[b]%P*ifac[a-b]%P;}
int main(){
scanf("%d%d",&n,&k);
inv[]=; fac[]=fac[]=ifac[]=ifac[]=;
for(int i=;i<=n;++i){
inv[i]=1ll*(P-P/i)*inv[P%i]%P;//乘法逆元线性预处理
fac[i]=fac[i-]*i%P;
ifac[i]=ifac[i-]*inv[i]%P;
}m=n-k;nw=;
for(int i=m;i>=;--i,nw=nw*nw%P)//倒着枚举i
ans=((ans+((i&)?-:)*C(m,i)%P*(nw-)%P)%P+P)%P;
ans=ans*C(n,k)%P;
printf("%lld",ans);
return ;
}
bzoj2839 集合计数(容斥)的更多相关文章
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- [BZOJ2839]:集合计数(组合数学+容斥)
题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
随机推荐
- day 22 二十二、面向对象导入、名称空间、类与对象
一.面向对象导入 1.含义: ①面向过程: 重过程:解决问题,考虑的是解决问题的流程 解决问题的思路清晰,但拓展性不强 ②面向对象: 重对象:解决问题,找到解决问题的对象 解决问题的思路可能不止一条( ...
- js常用正则表达式判断
1.判断IP:端口 <html> <head> </head> <body> ip:port<input type="" na ...
- 周末没事干就看CSS JS Python ThinkPHP的书,照着例子运行就行,可以增强信心(www.delphihtmlcomponents.com 是神器,也可以帮助我学习。还有虚拟机运行Web)
https://www.javatpoint.com/javascript-tutorialhttps://www.javatpoint.com/html-tutorialhttps://www.ja ...
- 洛谷P4778 Counting swaps 数论
正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...
- Python001-操作MSSQL(Microsoft sql server)基础示例(一)
Python操作mssql server数据库可以通过pymssql或pyodbc实现的.此文以pymssql为例.Python操作MSSQL基本操作步骤如下所示: 获取数据库连接Connection ...
- pymysql连接数据库报错:'NoneType' object has no attribute 'encoding'
直接写 utf8 即可.
- javascript 的引入
目录 一.静态引入 1. html标签script引入 2. esm 中import ModuleName from 'module/path' 3. commonjs 中 const ModuleN ...
- python多进程并发和多线程并发和协程
为什么需要并发编程? 如果程序中包含I/O操作,程序会有很高的延迟,CPU会处于等待状态,这样会浪费系统资源,浪费时间 1.Python的并发编程分为多进程并发和多线程并发 多进程并发:运行多个独立的 ...
- 获取地址栏url
Url=${window.location.protocol}//${window.location.host}${window.location.pathname}
- 用php实现斐波那契数列,如: 1, 1, 2, 3, 5, 8, 13, 21, 34。用数组求出第20个数的值。
<?php //用数组 function fib($n){ $array = array(); $array[0] = 1; $array[1] = 1; for($i=2;$i<$n;$ ...