[十二省联考2019]D1T1异或粽子
嘟嘟嘟
做这题之前,强烈推荐先把这道题切了P1631序列合并。
这两道题思路基本一模一样。
首先把异或处理成前缀异或,然后维护一个大根堆,每一次取出堆顶加到答案里面,然后把堆顶所在元素的次大的异或值放进堆里。这样循环\(k\)次,就是答案。
关键在于对于数\(sum[i]\),怎么找异或第几大。众人皆知是建01trie,然后在trie上像平衡树找第\(k\)大一样二分就可以了。因为对于每一个\(i\),查找的范围是\(0\) ~ \(i - 1\),建\(n\)棵trie树当然不行,所以我们要建一棵可持久化trie树就好啦。
但是有更好的方法。我们之所以要建可持久化trie树,就是因为每一个点的查找范围不同,否则建一棵就够了。那范围为什么不同呢?就是为了怕找重。但重了就是每一个答案算了两遍,所以我们直接建一棵trie树,然后循环\(2k\)次,然后最后的答案除以2不就是真正的答案了吗。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e5 + 5;
const int maxt = 1e7 + 5;
const int N = 31;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen("xor.in", "r", stdin);
freopen("xor.out", "w", stdout);
#endif
}
int n, K;
ll a[maxn], sum[maxn];
ll b[maxn], cnt = 0;
In void work0()
{
for(int i = 1; i <= n; ++i)
{
ll sum = 0;
for(int j = i; j <= n; ++j)
sum ^= a[j], b[++cnt] = sum;
}
sort(b + 1, b + cnt + 1);
ll ans = 0;
for(int i = cnt; i >= cnt - K + 1; --i) ans += b[i];
write(ans), enter;
}
struct Node
{
ll val, num; int rk;
In bool operator < (const Node& oth)const
{
return val < oth.val;
}
};
priority_queue<Node> q;
struct Tree
{
int ch[2], siz;
}t[maxt];
int root, tcnt = 0;
In void insert(int& now, ll x, int d)
{
if(!now) now = ++tcnt;
if(d == -1) {++t[now].siz; return;}
insert(t[now].ch[(x >> d) & 1], x, d - 1);
t[now].siz = t[t[now].ch[0]].siz + t[t[now].ch[1]].siz;
}
In ll query(ll x, int k)
{
ll ret = 0; int now = root;
for(int i = N; i >= 0; --i)
{
int p = (x >> i) & 1;
if(t[t[now].ch[p ^ 1]].siz >= k) now = t[now].ch[p ^ 1], ret |= ((1LL * 1) << i);
else k -= t[t[now].ch[p ^ 1]].siz, now = t[now].ch[p];
}
return ret;
}
int main()
{
//MYFILE();
n = read(), K = read();
for(int i = 1; i <= n; ++i) a[i] = read();
if(n <= 5000) {work0(); return 0;}
for(int i = 1; i <= n; ++i) sum[i] = sum[i - 1] ^ a[i];
for(int i = 0; i <= n; ++i) insert(root, sum[i], N);
for(int i = 0; i <= n; ++i)
q.push((Node){query(sum[i], 1), sum[i], 1});
ll ans = 0;
for(int i = 1; i <= (K << 1); ++i)
{
Node tp = q.top(); q.pop();
ans += tp.val;
if(tp.rk <= n) q.push((Node){query(tp.num, tp.rk + 1), tp.num, tp.rk + 1});
}
write(ans >> 1), enter;
return 0;
}
[十二省联考2019]D1T1异或粽子的更多相关文章
- LOJ3048 「十二省联考 2019」异或粽子
题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...
- 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...
- LOJ#3048. 「十二省联考 2019」异或粽子(trie树+堆)
题面 传送门 题解 我们先把它给前缀异或和一下,然后就是要求前\(k\)大的\(a_i\oplus a_j\).把\(k\)乘上个\(2\),变成前\(2k\)大的\(a_i\oplus a_j\), ...
- 「十二省联考 2019」异或粽子——tire树+堆
题目 [题目描述] 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅 ...
- LOJ#3048. 「十二省联考 2019」异或粽子 Trie
原文链接www.cnblogs.com/zhouzhendong/p/LOJ3048.html 题解 $O(n\log^2 {a_i})$ 的做法比较简单: 1. 求出第 k 大的是什么: 二分答案, ...
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
[BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
随机推荐
- Luogu P5279 [ZJOI2019]麻将
ZJOI2019神题,间接送我退役的神题233 考场上由于T2写挂去写爆搜的时候已经没多少时间了,所以就写挂了233 这里不多废话直接开始讲正解吧,我们把算法分成两部分 1.建一个"胡牌自动 ...
- MySQL性能优化总结___本文乃《MySQL性能调优与架构设计》读书笔记!
一.MySQL的主要适用场景 1.Web网站系统 2.日志记录系统 3.数据仓库系统 4.嵌入式系统 二.MySQL架构图: 三.MySQL存储引擎概述 1)MyISAM存储引擎 MyISAM存储引擎 ...
- Python用Django写restful api接口
用Python如何写一个接口呢,首先得要有数据,可以用我们在网站上爬的数据,在上一篇文章中写了如何用Python爬虫,有兴趣的可以看看: https://www.cnblogs.com/sixrain ...
- 写给 Android 开发的小程序布局指南,Flex 布局!
一.序 Hi,大家好,我是承香墨影! 最近在做小程序,验证一些方向,开发效率确实很快,就是各种微信的审核有点费劲,但是总归是有办法解决的. 想要开发一款小程序,其实和我们正常写一款 App 类似,你需 ...
- Accept 与 Content-Type
Accept 表示请求方希望的资源类型,或者能解析识别的类型 Content-Type 表示实际发送的资源类型 这里资源类型通过 MIME types 表示. Accept Accept 是浏览器发送 ...
- ABP框架连接Mysql数据库
开始想用Abp框架来搭建公司的新项目,虽然一切还没有定数,但是兵马未动,粮草先行,我先尝试一下整个过程,才能够更好的去争取机会. 此次技术选型:Abp(Asp.Net core mvc)+mysql( ...
- jquery快速入门(二)
jQuery 效果 1.隐藏,显示 1.1显示 hide() 和隐藏 show() 语法:$(selector).hide(speed,callback); $(selector).show(spee ...
- 命令行程序增加 GUI 外壳
Conmajia © 2012 Updated on Feb. 21, 2018 命令行大家都用过: 图 1 命令行程序工作界面 现在想办法为它做一个 GUI 外壳,实际效果参考图 2. 图 2 带 ...
- 大数据时代的图表可视化利器——highcharts,D3和百度的echarts
大数据时代的图表可视化利器——highcharts,D3和百度的echarts https://blog.csdn.net/minidrupal/article/details/42153941 ...
- MySQL字段操作与数据处理
一,对字段的操作 1.拼接字段:Concat()函数 多数DBMS使用 + 或者 || 来实现拼接,而MySQL使用 Concat() 函数来实现拼接. 实例: Concat()函数拼接时加上的字符需 ...