seaborn使用(绘图函数)
seaborn使用(绘图函数)
数据集分布的可视化
分类数据的绘图
线性关系可视化
一.数据集分布的可视化
distplotkdeplotrugplot
1.distplot()
灵活的绘制单变量的分布,传入一组一维数据
默认kde为True,纵坐标为在横坐标区域内分布的概率,曲线表示概率密度函数,在区间上积分值为1
设置kde为False,纵坐标表示落在横坐标bins中的数值的数量
seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
Parameters:
- a:传入的一维数据
- bins:控制直方图的竖直的长方形的数量
- hist:是否绘制直方图
- kde:是否绘制高斯和密度估计曲线
- rug:是否在坐标轴上绘制rug
- fit:An object with fit method, returning a tuple that can be passed to a pdf method a positional arguments following an grid of values to evaluate the pdf on.
- color:设置颜色
- vertical:设置为true,观察值在y轴
- norm_hist:设置为true,直方图显示的是密度而不是count数
- axlabel:Name for the support axis label
- label:Legend label for the relevent component of the plot
- ax:if provided, plot on this axis
returns: - ax: matplotlib Axes.Returns the Axes object with the plot for further tweaking
2.kdeplot()
拟合或者绘画单元变量或者是双元变量的核密度估计
seaborn.kdeplot(data, data2=None, shade=False, vertical=False, kernel='gau', bw='scott', gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None, **kwargs)
Parameters
- data:Input data
- data2:Second input data. If present, a bivariate KDE will be estimated.
- shade:If True, shade in the area under the KDE curve (or draw with filled contours when data is bivariate)
- vertical:If True, density is on x-axis
- kernel:{‘gau’ | ‘cos’ | ‘biw’ | ‘epa’ | ‘tri’ | ‘triw’ } optional.
Code for shape of kernel to fit with. Bivariate KDE can only use gaussian kernel. bw:{‘scott’ | ‘silverman’ | scalar | pair of scalars }, optional
Name of reference method to determine kernel size, scalar factor, or scalar for each dimension of the bivariate plot.- gridsize:int,optional.Number of discrete points in the evaluation grid.(评估网格中的离散点的数量)
- cut:scalar,optional.Draw the estimate to cut * bw from the extreme data points.
- clipt:Lower and upper bounds for datapoints used to fit KDE. Can provide a pair of (low, high) bounds for bivariate plots.定义上下界
- legend:If True, add a legend or label the axes when possible.添加图例
- cumulative:If True, draw the cumulative distribution estimated by the kde.累积概率密度
- shade_lowest:If True, shade the lowest contour of a bivariate KDE plot. Not relevant when drawing a univariate plot or when shade=False. Setting this to False can be useful when you want multiple densities on the same Axes.
- cbar:If True and drawing a bivariate KDE plot, add a colorbar.
- cbar_ax:Existing axes to draw the colorbar onto, otherwise space is taken from the main axes.
- cbar_kws:Keyword arguments for
fig.colorbar(). - ax:Axes to plot on, otherwise uses current axes.
- kwargs:Other keyword arguments are passed to
plt.plot()orplt.contour{f}depending on whether a univariate or bivariate plot is being drawn.
Returns
ax:Axes with plot
3.regplot()
绘制数据的散点分布并且可以进行线性回归模型拟合
seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker='o', scatter_kws=None, line_kws=None, ax=None)
patameters
- x, y: string, series, or vector array
Input variables. If strings, these should correspond with column names in data. When pandas objects are used, axes will be labeled with the series name. - data : DataFrame
Tidy (“long-form”) dataframe where each column is a variable and each row is an observation. - x_estimator : callable that maps vector -> scalar, optional
Apply this function to each unique value of x and plot the resulting estimate. This is useful when x is a discrete variable. If x_ci is given, this estimate will be bootstrapped and a confidence interval will be drawn. - x_bins : int or vector, optional
Bin the x variable into discrete bins and then estimate the central tendency and a confidence interval. This binning only influences how the scatterplot is drawn; the regression is still fit to the original data. This parameter is interpreted either as the number of evenly-sized (not necessary spaced) bins or the positions of the bin centers. When this parameter is used, it implies that the default of x_estimator is numpy.mean. - x_ci : “ci”, “sd”, int in [0, 100] or None, optional
Size of the confidence interval used when plotting a central tendency for discrete values of x. If "ci", defer to the value of the ci parameter. If "sd", skip bootstrappig and show the standard deviation of the observations in each bin. - scatter : bool, optional 是否绘制散点图
If True, draw a scatterplot with the underlying observations (or the x_estimator values). - fit_reg : bool, optional 是否绘制拟合曲线
If True, estimate and plot a regression model relating the x and y variables. - ci : int in [0, 100] or None, optional 回归估计的置信区间的大小
Size of the confidence interval for the regression estimate. This will be drawn using translucent bands around the regression line. The confidence interval is estimated using a bootstrap; for large datasets, it may be advisable to avoid that computation by setting this parameter to None. - n_boot : int, optional
Number of bootstrap resamples used to estimate the ci. The default value attempts to balance time and stability; you may want to increase this value for “final” versions of plots. - units : variable name in data, optional
If the x and y observations are nested within sampling units, those can be specified here. This will be taken into account when computing the confidence intervals by performing a multilevel bootstrap that resamples both units and observations (within unit). This does not otherwise influence how the regression is estimated or drawn. - order : int, optional 如果order大于1,则用polyfit进行多项式回归
If order is greater than 1, use numpy.polyfit to estimate a polynomial regression. - logistic : bool, optional 逻辑回归
If True, assume that y is a binary variable and use statsmodels to estimate a logistic regression model. Note that this is substantially more computationally intensive than linear regression, so you may wish to decrease the number of bootstrap resamples (n_boot) or set ci to None. - lowess : bool, optional
If True, use statsmodels to estimate a nonparametric lowess model (locally weighted linear regression). Note that confidence intervals cannot currently be drawn for this kind of model. - robust : bool, optional 减轻异常值,进行强回归
If True, use statsmodels to estimate a robust regression. This will de-weight outliers. Note that this is substantially more computationally intensive than standard linear regression, so you may wish to decrease the number of bootstrap resamples (n_boot) or set ci to None. - logx : bool, optional y=log(x)的回归,x必须为正数
If True, estimate a linear regression of the form y ~ log(x), but plot the scatterplot and regression model in the input space. Note that x must be positive for this to work. - {x,y}_partial : strings in data or matrices
Confounding variables to regress out of the x or y variables before plotting. - truncate : bool, optional 截取一部分
By default, the regression line is drawn to fill the x axis limits after the scatterplot is drawn. If truncate is True, it will instead by bounded by the data limits. - {x,y}_jitter : floats, optional 增加噪音值
Add uniform random noise of this size to either the x or y variables. The noise is added to a copy of the data after fitting the regression, and only influences the look of the scatterplot. This can be helpful when plotting variables that take discrete values. - label : string
Label to apply to ether the scatterplot or regression line (if scatter is False) for use in a legend. - color : matplotlib color
Color to apply to all plot elements; will be superseded by colors passed in scatter_kws or line_kws. - marker : matplotlib marker code
Marker to use for the scatterplot glyphs. - {scatter,line}_kws : dictionaries
Additional keyword arguments to pass to plt.scatter and plt.plot. - ax : matplotlib Axes, optional
Axes object to draw the plot onto, otherwise uses the current Axes.
Returns
ax : matplotlib Axes
The Axes object containing the plot
seaborn使用(绘图函数)的更多相关文章
- Matlab绘图函数一览
要查看Matlab所有绘图函数,请从Matlab主界面菜单查看“绘图目录”,或从Matlab帮助文档查看“Types of MATLAB Plots”(在线版本).本文的图和英文解释摘自Matlab帮 ...
- 【《zw版·Halcon与delphi系列原创教程》Halcon图层与常用绘图函数
[<zw版·Halcon与delphi系列原创教程>Halcon图层与常用绘图函数 Halcon的绘图函数,与传统编程vb.c.delphi语言完全不同, 传统编程语言,甚至cad ...
- R语言——基本绘图函数
通过一个综合的例子测试绘图函数 学习的内容是tigerfish老师的教程. 第一节:基本知识 用seq函数产生100位学生的学号. > num = seq(,) > num [] [] [ ...
- 《MATLAB从入门到放弃》二维曲线和图形绘制基础(二):使用Help文档学习line、plot、plotyy、subplot、hold绘图函数
目录: » plot 最常用的二维曲线绘图函数 > 帮助文档 > 基本使用语法 > 线条的样式.符号和颜色调整 > 图形属性调整 > 使用图形句柄进行设置 » ...
- OpenCV中的绘图函数-OpenCV步步精深
OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...
- 数据分析与展示——Matplotlib基础绘图函数示例
Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...
- opencv学习之路(4)、Mat类介绍,基本绘图函数
一.Mat类创建 Mat img;//创建无初始化矩阵 Mat img1(,,CV_8UC1);//200行,100列(长200,宽100) Mat img2(Size(,),CV_8UC3,Scal ...
- Matlab 二维绘图函数(plot类)
plot 功能 绘制二维图形的最基本函数. 语法 //x为向量时,以x的元素值为纵坐标,x的序号为横坐标绘制曲线. //x为矩阵时,以其序号为横坐标,按列绘制每列元素值相对于其序号的曲线. polt( ...
- VS2010/MFC编程入门之四十九(图形图像:CDC类及其屏幕绘图函数)
上一节中鸡啄米讲了文本输出的知识,本节的主要内容是CDC类及其屏幕绘图函数. CDC类简介 CDC类是一个设备上下文类. CDC类提供了用来处理显示器或打印机等设备上下文的成员函数,还有处理与窗口客户 ...
随机推荐
- FPGA与MATLAB数据交互高效率验证算法——仿真阶段
之前博文是对基本设计技巧的总结和一些小设计随笔,内容有点杂,缺乏目的性.本来后续计划设计几个小项目,但导师的任务比较紧,所以为了提高效率,后续博客会涉及到很多算法方面的设计与验证的内容,主要关于OFD ...
- apache修改最大连接数报错
报错的内容: AH00180: WARNING: MaxRequestWorkers of 2500 exceeds ServerLimit value of 256 servers, decreas ...
- Menu-多级菜单
#menu多级菜单 from tkinter import * master = Tk() def callback(): print('我被调用了--') menubar=Menu(master)# ...
- 涨薪必备Javascript,快点放进小口袋!
摘要: 嗨,新一年的招聘季,你找到更好的工作了吗?小姐姐最近刚换的工作,来总结下面试必备小技能,从this来看看javascript,让我们更深入的了解它. 前言 在JavaScript中,被吐槽最多 ...
- springboot集成mybatis(二)
上篇文章<springboot集成mybatis(一)>介绍了SpringBoot集成MyBatis注解版.本文还是使用上篇中的案例,咱们换个姿势来一遍^_^ 二.MyBatis配置版(X ...
- [LeetCode] Smallest Good Base 最小的好基数
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- 前端页面间传值之cookie传值和url传值
大家好,我是小C: 我们在做一些网站需要传值交互,最近我就遇到了这问题,如果用H5的本地存储,IE8以下是不能支持的,但是官方说到IE8及以上就支持,但是某些版本还是存在问题.所以我们来看看下面两种方 ...
- Mysql之表的操作与索引操作
表的操作: 1.表的创建: create table if not exists table_name(字段定义); 例子: create table if not exists user(id in ...
- “百度杯”CTF比赛 九月场_再见CMS(齐博cms)
题目在i春秋ctf大本营 又是一道cms的题,打开御剑一通乱扫,发现后台登录地址,访问一看妥妥的齐博cms 记得以前很久以前利用一个注入通用漏洞,这里我贴上链接,里面有原理与利用方法详细说明: 齐博c ...
- ●BZOJ 1272 [BeiJingWc2008]Gate Of Babylon
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1272 题解: 容斥,Lucas定理本题的容斥考虑类似 [BZOJ 1042 [HAOI200 ...