BZOJ_4378_[POI2015]Logistyka_树状数组

Description

维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。

Input

第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。

Output

包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。

Sample Input

3 8
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1

Sample Output

NIE
TAK
NIE
TAK

需要注意查询是在整个序列上的而不是给定区间。
假设大于s的个数有k个,则剩下的那些权值和必须要大于等于(c-k)*s。
于是我们把权值离散化然后用两个树状数组分别维护。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1000050
#define RR register
typedef long long ll;
int n,m,t[N],maxn=1000000000,h[N],p[N];
ll c[N][2];
char opt[10];
inline int rd() {
RR int x=0,f=1; RR char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+s-'0';s=getchar();}
return x*f;
}
struct A {
int num,v,id,opt,pos;
}a[N];
inline bool cmp1(const A &x,const A &y){return x.num<y.num;}
inline bool cmp2(const A &x,const A &y){return x.id<y.id;}
void fix(int x,int v,int flg) {
for(;x<=m;x+=x&(-x)) c[x][flg]+=v;
}
ll inq(int x,int flg) {
ll re=0;
for(;x;x-=x&(-x)) re+=c[x][flg];
return re;
}
int main() {
n=rd(); m=rd();
int i,j;
for(i=1;i<=m;i++) {
scanf("%s",opt);
if(opt[0]=='U') {
a[i].opt=1; a[i].id=i; a[i].pos=rd(); a[i].num=rd();
}else {
a[i].opt=2; a[i].id=i; a[i].pos=rd(); a[i].num=rd();
}
}
sort(a+1,a+m+1,cmp1); a[0].num=134234;
for(j=0,i=1;i<=m;i++) {
if(a[i].num!=a[i-1].num) j++;
a[i].v=j;
h[j]=a[i].num;
}
sort(a+1,a+m+1,cmp2);
for(i=1;i<=m;i++) {
if(a[i].opt==1) {
int t=a[i].pos;
if(p[t]) {
fix(p[t],-1,1);
fix(p[t],-h[p[t]],2);
}
p[t]=a[i].v;
fix(p[t],1,1);
fix(p[t],h[p[t]],2);
}else {
int k=inq(m,1)-inq(a[i].v-1,1);
if(k>=a[i].pos) {
puts("TAK"); continue;
}
ll sum=inq(a[i].v-1,2);
puts(sum>=1ll*a[i].num*(a[i].pos-k)?"TAK":"NIE");
}
}
}

BZOJ_4378_[POI2015]Logistyka_树状数组的更多相关文章

  1. 【BZOJ4378】[POI2015]Logistyka 树状数组

    [BZOJ4378][POI2015]Logistyka Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这 ...

  2. BZOJ4378[POI2015]Logistyka——树状数组

    题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...

  3. [POI2015]LOG(树状数组)

    今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...

  4. 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组

    [BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...

  5. 【BZOJ4384】[POI2015]Trzy wieże 树状数组

    [BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...

  6. 树状数组【洛谷P3586】 [POI2015]LOG

    P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...

  7. 【bzoj4378】[POI2015]Logistyka 离散化+树状数组

    题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...

  8. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  9. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

随机推荐

  1. 完整的WebRTC调用序列图

    说在前面的话:此图出自Rea-Time Communication with WebRTC: https://book.douban.com/subject/25849712/ 的第五章.

  2. jsoup 使用总结1--添加header

    jsoup 使用总结1--添加header 大部分时候,我们使用jsoup解析网页的是否都是直接Jsoup.connect(url); 孰不知,我们可以添加header,例如 Host, Refere ...

  3. CentOS7安装codeblocks(转载)

    1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可 yum install gccyum install gcc-c++ 2.安装gtk2-devel ...

  4. nginx配置 location及rewrite规则详解

    1. location正则写法 语法规则: location [=|~|~*|^~] /uri/ { … } =    开头表示精确匹配 ^~  开头表示uri以某个常规字符串开头,理解为匹配 url ...

  5. git 使用简易指南

  6. python笔记:#009#判断语句

    判断(if)语句 目标 开发中的应用场景 if 语句体验 if 语句进阶 综合应用 01. 开发中的应用场景 生活中的判断几乎是无所不在的,我们每天都在做各种各样的选择,如果这样?如果那样?-- 程序 ...

  7. NewLife.Net——管道处理器解决粘包

    Tcp网络编程,必须要解决的一个问题就是粘包,尽管解决办法有很多,这里讲一个比较简单的方法. 老规矩,先上代码:https://github.com/nnhy/NewLife.Net.Tests 一. ...

  8. IAAS-libvirt介绍。

    Libvirt介绍 Libvirt与hypervisor无关,其提供与多种操作系统虚拟化能力进行交互的API与工具库. Libvirt提供了一个通用稳定的抽象层,可以安全的操作物理机上的虚拟机,同时为 ...

  9. Java程序算法设计视频分享,需要的来

    每年都会有人说,IT行业饱和了,根本就找不到工作,其实,我想说的是,不是工作难找,而是你自己不够好! 前几天看到一CEO在微博上吐槽: 前几天招一算法工程师我们给了8万月薪*14+奖金,人家去阿里拿5 ...

  10. VM虚拟机链接克隆及linux eth0网卡的快速设置方法

    对于后台开发者来说,在学习过程中必然接触众多中间件,在自己的虚拟机进行操作甚至搭建cluster是很常见的事情. 我在初学者时摸索出一套快速的克隆虚拟机方法.分享给大家. 产品VMware® Work ...