传送门

题意:三种颜色,规定使用每种颜色次数$r,g,b$,给出一个置换群,求多少种不等价着色

$m \le 60,\ r,g,b \le 20$


咦,规定次数?

《组合数学》上不是有生成函数做法吗....

生成函数貌似可以和背包$DP$互相转换来着

然后就做出来了

每种置换求循环,$d[i][j][k][l]$表示前$i$个循环有了$j$个红$k$个绿$l$个蓝

遇到一点小问题,一直输出$0$

看了黄学长的代码发现他加了一个恒等置换....

想了一会儿才明白题目给的不是置换群,因为少了一个恒等置换.....

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n,r,b,g,m,P,a[N];
int f[N],d[N][][],w[N],ans;
bool vis[N];
inline void mod(int &x){if(x>=P) x-=P;}
void dp(){
int s=;
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++) if(!vis[i]){
int u=a[i],len=;
while(u!=i) vis[u]=,len++,u=a[u];
w[++s]=len;
}
memset(d,,sizeof(d));
d[][][]=;
for(int i=;i<=s;i++)
for(int j=r;j>=;j--)
for(int k=g;k>=;k--)
for(int l=b;l>=;l--){
if(j>=w[i]) mod(d[j][k][l]+=d[j-w[i]][k][l]);
if(k>=w[i]) mod(d[j][k][l]+=d[j][k-w[i]][l]);
if(l>=w[i]) mod(d[j][k][l]+=d[j][k][l-w[i]]);
}
mod(ans+=d[r][g][b]);
}
inline int Pow(int a,int b){
int re=;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
inline int Inv(int a){return Pow(a,P-);}
int main(){
freopen("in","r",stdin);
r=read();b=read();g=read();m=read();P=read();
n=r+b+g;
for(int j=;j<=m;j++){
for(int i=;i<=n;i++) a[i]=read();
dp();
}
m++;
for(int i=;i<=n;i++) a[i]=i;
dp();
ans=ans*Inv(m)%P;
printf("%d",ans);
}

BZOJ 1004: [HNOI2008]Cards [Polya 生成函数DP]的更多相关文章

  1. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  2. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  3. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  4. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  5. BZOJ 1004: [HNOI2008]Cards

    Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...

  6. BZOJ 1004: [HNOI2008]Cards(群论)

    好吧我就是蒟蒻根本没听说过群论(虽说听叉姐说几万年都不会考) 我也讲不太来,直接戳VFK大神的blog啦 = = http://vfleaking.blog.163.com/blog/static/1 ...

  7. 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...

  8. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  9. 【BZOJ】1004: [HNOI2008]Cards(置换群+polya+burnside)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用 ...

随机推荐

  1. java web开发 高并发处理

    转自:http://blog.csdn.net/zhangzeyuaaa/article/details/44542161 java处理高并发高负载类网站中数据库的设计方法(java教程,java处理 ...

  2. Function方法和属性图

  3. js代码性能优化的几个方法

    相信写代码对于大部分人都不难,但想写出高性能的代码就需要一定的技术积累啦,下面是一些优化JavaScript代码性能的常见方法. 一.注意作用域 1.避免全局查找 使用全局变量和函数肯定要比局部的开销 ...

  4. HDU 4763 Theme Section

    题目: It's time for music! A lot of popular musicians are invited to join us in the music festival. Ea ...

  5. Spark算子--distinct

    distinct--Transformation类算子 代码示例    

  6. [随笔] 简单操作解决Google chrome颜色显示不正常的情况

    最近在用Linuxmint 真的是极友好的桌面Linux啊,然后用最新的Linuxmint自带的Firefox浏览器上网,发现颜色都变成了红色黄色变绿色,以为是显卡的问题,搞了一阵,无果.果断换Goo ...

  7. SSL证书安装指引

    https://cloud.tencent.com/document/product/400/4143 下载得到的 www.domain.com.zip 文件,解压获得3个文件夹,分别是Apache. ...

  8. webpack+vue项目实战(四,前端与后端的数据交互和前端展示数据)

    地址:https://segmentfault.com/a/1190000010063757 1.前言 今天要做的,就是在上一篇文章的基础上,进行功能页面的开发.简单点说呢,就是与后端的数据交互和怎么 ...

  9. 利用H5构建地图和获取定位地点

    地图与地理定位 定位在大部分项目中都需要实现,如何实现主要有如下的几种方法 H5定位 在HTML5中navigator有很强大的功能,其中就有定位的方法 navigator.geolocation.g ...

  10. mybatis_SQL映射(2)

    文章摘录自:http://blog.csdn.net/y172158950/article/details/17258377 1. sql的重用:定义一个sql片段,可在任何SQL语句中重用该片段. ...