传送门

题意:略


论文 《SPFA算法的优化及应用》

http://www.cnblogs.com/lazycal/p/bzoj-2595.html

本题的核心就是求斯坦纳树:

Steiner Tree:

Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals,

the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals (but may include additional vertices).

也就是对于给定的点集求一颗包含他的最小生成树(可以包含额外的点)

$ST$是$NPC$问题,规模小的情况可以使用状压$DP$解决

$f[i][s]$表示根在$i$,连通的点集为$s$的(仅包括给定点集中的点)的最小花费

有两种转移:

对于点权的情况(边权类似):

$f[i][s]=min{f[i][s']+f[i][s-s']-val[i]}$,划分成两个子集,具有阶段性普通$DP$就可以

$f[i][s]=min{f[i'][s]+val[i]}$,从一颗树扩展而来,阶段性不明显,但满足三角不等式,使用$spfa$求解

那么过程就很清楚了

  • 从小到大枚举集合和点
  • 第一种转移枚举子集
  • 第二种转移对当前集合使用spfa

然后就到黄学长哪里仿写了份模板

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define pii pair<int,int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=,S=(<<)+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,m,k,a[N][N];
int f[N][N][S];
struct Path{
int i,j,s;
Path(){}
Path(int a,int b,int c):i(a),j(b),s(c){}
}pre[N][N][S]; queue<pii> q;
bool inq[N][N];
int dx[]={,-,,},dy[]={,,,-};
void spfa(int s){
while(!q.empty()){
int x=q.front().fir,y=q.front().sec;
inq[x][y]=;q.pop();
for(int k=;k<;k++){
int i=x+dx[k],j=y+dy[k];
if(i<||i>n||j<||j>m) continue;
if(f[i][j][s]>f[x][y][s]+a[i][j]){
f[i][j][s]=f[x][y][s]+a[i][j];
pre[i][j][s]=Path(x,y,s);
if(!inq[i][j])
q.push(MP(i,j)),inq[i][j]=;
}
}
}
}
bool vis[N][N];
void dfs(int x,int y,int s){
vis[x][y]=;
Path t=pre[x][y][s];
if(t.i==&&t.j==) return;
dfs(t.i , t.j , t.s);
if(t.i==x && t.j==y) dfs(t.i , t.j , s-t.s);
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
a[i][j]=read();
if(!a[i][j]) f[i][j][<<k]=,k++;
} int All=<<k;
for(int sa=;sa<All;sa++){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
for(int s=sa&(sa-);s;s=sa&(s-)){
int _=f[i][j][s]+f[i][j][sa-s]-a[i][j];
if(_<f[i][j][sa]){
f[i][j][sa]=_;
pre[i][j][sa]=Path(i,j,s);
}
}
if(f[i][j][sa]<INF) q.push(MP(i,j)),inq[i][j]=;
}
spfa(sa);
} int x=,y=,flag=;
for(int i=;i<=n&&!flag;i++)
for(int j=;j<=m;j++) if(!a[i][j]) {x=i;y=j;flag=;break;}
dfs(x,y,All-);
printf("%d\n",f[x][y][All-]);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(a[i][j]==) putchar('x');
else if(vis[i][j]) putchar('o');
else putchar('_');
}
puts("");
}
}

BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】的更多相关文章

  1. 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1572  Solved: 7 ...

  2. [bzoj2595][WC2008]游览计划/[bzoj5180][Baltic2016]Cities_斯坦纳树

    游览计划 bzoj-2595 wc-2008 题目大意:题目链接.题目连接. 注释:略. 想法:裸题求斯坦纳树. 斯坦纳树有两种转移方式,设$f[s][i]$表示联通状态为$s$,以$i$为根的最小代 ...

  3. BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)

    题目链接 f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解.i是枚举得到的根节点,有了根节点就容易DP了. 那么i为根节点时,其状态s的更新为 \(f[i][ ...

  4. bzoj:2595: [Wc2008]游览计划

    Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点:否则表示控制该方块至少需要的志愿者数 ...

  5. bzoj 2595 [Wc2008]游览计划(斯坦纳树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题意] 给定N*M的长方形,选最少权值和的格子使得要求的K个点连通. [科普] ...

  6. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  7. BZOJ2595 [Wc2008]游览计划 【状压dp + 最短路】

    题目链接 BZOJ2595 题解 著名的斯坦纳树问题 设\(f[i][j][s]\)表示点\((i,j)\)与景点联通状况为\(s\)的最小志愿者数 设\(val[i][j]\)为\((i,j)\)需 ...

  8. 【BZOJ】2595: [Wc2008]游览计划

    题意 \(n * m\)的网格,如果\(a_{i, j} = 0\)则表示景点,否则表示这里的需要的志愿者人数.求一种安排志愿者的方案使得所有景点连通且志愿者最少. 分析 本题可以插头dp,然而有一个 ...

  9. 【BZOJ2595】游览计划(状压DP,斯坦纳树)

    题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...

随机推荐

  1. You can Solve a Geometry Problem too(线段求交)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000 ...

  2. hbmy周赛1--E

    E - Combination Lock Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I6 ...

  3. windows下更改mysql数据储存物理目录

    windows10 1.停止mysql服务 以管理员身份运行cmd 输入命令 net stop mysql57 (我的mysql版本是5.7的,具体名称以你当前版本为主) 也可以打开任务管理器找到上面 ...

  4. jsp页面固定页面为绝对路径

    1 <!-- 固定到绝对路径 --> 2 <base href="<%=request.getContextPath()%>/"/>

  5. thinkphp3.2后台模块怎么添加(admin),直接复制Home?还是在入口文件生成?

    1.都可以,复制home改下命名空间也行,在入口添加下参数自动生成也行 2ThinkPHP3.2后支持模块化开发,在Home目录的同级目录下创建一个新的文件夹,命名为Admin,或者就如你自己所说,直 ...

  6. 003_JS基础_面向对象基础

    3.1 对象   引入:在js中表示一个人的信息(name, gender, age)通过var申明三个变量,但是这样使用基本数据类型的变量,他们是互相独立的,没有联系:  此时就需要使用对象,对象是 ...

  7. 04 整合IDEA+Maven+SSM框架的高并发的商品秒杀项目之高并发优化

    Github:https://github.com/nnngu 项目源代码:https://github.com/nnngu/nguSeckill 关于并发 并发性上不去是因为当多个线程同时访问一行数 ...

  8. Spring MVC中使用POI导出Word

    内容绝大部分来源于网络 准备工作 准备[XwpfTUtil]工具类(来源于网络) 准备word模版 下载[XwpfTUtil]工具类 import org.apache.poi.xwpf.usermo ...

  9. python_分支循环

    什么是分支+循环? --不同条件进行不同逻辑处理            -- 分支 --满足条件进行反复相同逻辑处理     -- 循环 分支的形式? -- if 条件:  执行体   else: 执 ...

  10. 使用非java代码编程

    使用非JAVA代码     JAVA语言及其标准API(应用程序编程接口)应付应用程序的编写已绰绰有余.但在某些情况下,还是必须使用非JAVA编码.例如,我们有时要访问操作系统的专用特性,与特殊的硬件 ...