BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】
题意:略
http://www.cnblogs.com/lazycal/p/bzoj-2595.html
本题的核心就是求斯坦纳树:
Steiner Tree:
Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals,
the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals (but may include additional vertices).
也就是对于给定的点集求一颗包含他的最小生成树(可以包含额外的点)
$ST$是$NPC$问题,规模小的情况可以使用状压$DP$解决
$f[i][s]$表示根在$i$,连通的点集为$s$的(仅包括给定点集中的点)的最小花费
有两种转移:
对于点权的情况(边权类似):
$f[i][s]=min{f[i][s']+f[i][s-s']-val[i]}$,划分成两个子集,具有阶段性普通$DP$就可以
$f[i][s]=min{f[i'][s]+val[i]}$,从一颗树扩展而来,阶段性不明显,但满足三角不等式,使用$spfa$求解
那么过程就很清楚了
- 从小到大枚举集合和点
- 第一种转移枚举子集
- 第二种转移对当前集合使用spfa
然后就到黄学长哪里仿写了份模板
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define pii pair<int,int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=,S=(<<)+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,m,k,a[N][N];
int f[N][N][S];
struct Path{
int i,j,s;
Path(){}
Path(int a,int b,int c):i(a),j(b),s(c){}
}pre[N][N][S]; queue<pii> q;
bool inq[N][N];
int dx[]={,-,,},dy[]={,,,-};
void spfa(int s){
while(!q.empty()){
int x=q.front().fir,y=q.front().sec;
inq[x][y]=;q.pop();
for(int k=;k<;k++){
int i=x+dx[k],j=y+dy[k];
if(i<||i>n||j<||j>m) continue;
if(f[i][j][s]>f[x][y][s]+a[i][j]){
f[i][j][s]=f[x][y][s]+a[i][j];
pre[i][j][s]=Path(x,y,s);
if(!inq[i][j])
q.push(MP(i,j)),inq[i][j]=;
}
}
}
}
bool vis[N][N];
void dfs(int x,int y,int s){
vis[x][y]=;
Path t=pre[x][y][s];
if(t.i==&&t.j==) return;
dfs(t.i , t.j , t.s);
if(t.i==x && t.j==y) dfs(t.i , t.j , s-t.s);
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
a[i][j]=read();
if(!a[i][j]) f[i][j][<<k]=,k++;
} int All=<<k;
for(int sa=;sa<All;sa++){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
for(int s=sa&(sa-);s;s=sa&(s-)){
int _=f[i][j][s]+f[i][j][sa-s]-a[i][j];
if(_<f[i][j][sa]){
f[i][j][sa]=_;
pre[i][j][sa]=Path(i,j,s);
}
}
if(f[i][j][sa]<INF) q.push(MP(i,j)),inq[i][j]=;
}
spfa(sa);
} int x=,y=,flag=;
for(int i=;i<=n&&!flag;i++)
for(int j=;j<=m;j++) if(!a[i][j]) {x=i;y=j;flag=;break;}
dfs(x,y,All-);
printf("%d\n",f[x][y][All-]);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(a[i][j]==) putchar('x');
else if(vis[i][j]) putchar('o');
else putchar('_');
}
puts("");
}
}
BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】的更多相关文章
- 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)
2595: [Wc2008]游览计划 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1572 Solved: 7 ...
- [bzoj2595][WC2008]游览计划/[bzoj5180][Baltic2016]Cities_斯坦纳树
游览计划 bzoj-2595 wc-2008 题目大意:题目链接.题目连接. 注释:略. 想法:裸题求斯坦纳树. 斯坦纳树有两种转移方式,设$f[s][i]$表示联通状态为$s$,以$i$为根的最小代 ...
- BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)
题目链接 f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解.i是枚举得到的根节点,有了根节点就容易DP了. 那么i为根节点时,其状态s的更新为 \(f[i][ ...
- bzoj:2595: [Wc2008]游览计划
Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点:否则表示控制该方块至少需要的志愿者数 ...
- bzoj 2595 [Wc2008]游览计划(斯坦纳树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题意] 给定N*M的长方形,选最少权值和的格子使得要求的K个点连通. [科普] ...
- BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树
[题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...
- BZOJ2595 [Wc2008]游览计划 【状压dp + 最短路】
题目链接 BZOJ2595 题解 著名的斯坦纳树问题 设\(f[i][j][s]\)表示点\((i,j)\)与景点联通状况为\(s\)的最小志愿者数 设\(val[i][j]\)为\((i,j)\)需 ...
- 【BZOJ】2595: [Wc2008]游览计划
题意 \(n * m\)的网格,如果\(a_{i, j} = 0\)则表示景点,否则表示这里的需要的志愿者人数.求一种安排志愿者的方案使得所有景点连通且志愿者最少. 分析 本题可以插头dp,然而有一个 ...
- 【BZOJ2595】游览计划(状压DP,斯坦纳树)
题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...
随机推荐
- Nginx安装手册
前提是搭建yum安装环境,见前面的教程资料 Nginx安装手册1 nginx安装环境 nginx是C语言开发,建议在linux上运行,本教程使用Centos6.5作为安装环境. gcc 安装ngin ...
- 使用django建博客时遇到的URLcon相关错误以及解决方法。错误提示:类型错误:include0获得一个意外的关键参数app_name
root@nanlyvm:/home/mydj/mysite# python manage.py runserver Performing system checks... Unhandled exc ...
- python+appium+unittest
一个流行语言,一个主流工具,一个实用框架: For android 实例如下: import unittest from appium import webdriver from time impor ...
- java 数据类型间的转换
byte a = (byte)129; 129已经超过了byte数据类型的存储上限,所以需要在值的前面加括号需要转换的数据类型名. 但是从高往低转的时候数值精度会有丢失; 所以最后结果为 a = -1 ...
- Web前端:如何实现选择select下拉框选中跳转其他页面
<select onchange="window.location=this.value;"><option value="a.html"&g ...
- 关于JWPlayer播放器的一些测试学习
<!DOCTYPE html><html><head> <title>jwplayer播放器测试</title> <script ty ...
- ObjectiveC 深浅拷贝学习
在ObjC中,什么是深浅拷贝? 深浅拷贝分别指深拷贝和浅拷贝,即mutableCopy和copy方法. copy复制一个不可变对象,而mutableCopy复制一个mutable可变对象. 什么时候用 ...
- HTML 5 <embed> 标签
定义和用法 <embed> 标签定义嵌入的内容,比如插件. 实例 <embed src="helloworld.swf" />
- webpack模块机制浅析【一】
webpack模块机制浅析[一] 今天看了看webpack打包后的代码,所以就去分析了下代码的运行机制. 下面这段代码是webpack打包后的最基本的形式,可以说是[骨架] (function(roo ...
- java基础复习1
jre:Java运行环境 jdk:Java开发工具(包含jre) java两大机制:JVM (java虚拟机) 垃圾回收 变量的分类: 1.按数据类型分: 1)基本数据类型:8种 整型:byte sh ...