day4 递归原理及解析
递归
递归是一种调用自身的方法,在函数执行过程中重复不断的调用自身的过程,递归的规模每次都要缩小,一般前一步的程序作为后一步的参数。但是必须有递归结束条件。
递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题十分有效,它往往是算法的描述简洁而且易于理解。
递归算法解决问题的特点:
(1)递归就是在
(2)在使用递归测略时,必须有一个明确的递归结束条件,称为递归出口。
(3)递归算法解题通常显得很简洁,但递归算法解题的效率较低。所以一般不提倡递归算法设计程序。
(4)在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
递归一般在结束条件之后调用自己,首先约定一个递归结束条件,然后调用函数,直至递归结束位置。
递归算法所体现的“重复”一般有三个要求:
一是每次调用在规模上都有所缩小(通常是减半);
二是相邻两次重复之间有密切的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入);
三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。
递归算法不是一个高效的算法,在内存中开辟栈来存储,是自己调用自身的过程,如果递归的次数过多,容易造成栈溢出等。所以一般不推荐使用,但是在解决一类问题的时候很有用,比如二分法。
递归是在函数中实现的,下面来看一个例子:
def calc(n):
if n/ > :
#每次缩小一半进行运算
res = calc(n/)
#再次调用函数,重新执行函数,形成递归,直至n/ <= 1为止
print("res:",res)
print("N:",n)
return n calc()
上面代码就是一个递归过程,递归就是函数重复调用自身的过程,在一个递归结束条件之下结束递归。上面代码中,我们让参数每次减半,当n/2≤1的时候结束递归。
上面代码运行结果如下:
N: 1.25
res: 1.25
N: 2.5
res: 2.5
N: 5.0
res: 5.0
N: 10
如果函数没有返回值,默认返回的返回值是None。这点要注意。
#用代码实现斐波那契数列,0,,1,1,2,3,5,8,13,21,34.....
#思路,前一个数字加上后一个数字,由于是重复相加,可以使用递归,上一次的结果作为下一次的参数
def fibonacci(arg1,arg2,stop):
#定义一个函数,由于斐波那契是前一个数字与后一个数字相加,并且要有一个结束条件
if arg1 == 0:
#起始位置
print(arg1,arg2)
arg3 = arg1 + arg2 if arg3 < stop:
#定义结束条件,递归的出口
print(arg3)
fibonacci(arg2,arg3,stop)
#以第一次的结果为这次的参数进行调用,形成递归循环,如果没有递归出口,就是一个死循环 fibonacci(0,1,50)
递归就是函数自身调用的方法,通过对自身的调用实现循环的方式,但是必须有一个递归出口,在必要的时候结束循环,不然会一直循环不会停止。
def loop(arg1,arg2,stop):
if arg1 == :
print(arg1,arg2)
arg3 = arg1 + arg2
print(arg3)
#没有递归出口,就是一个死循环,函数没有终止条件,不知道什么时候终止循环
loop(arg2,arg3,stop) loop(,,)
上面代码就是一个死循环,因为没有终止条件,函数一直执行,当执行到函数的时候,就会继续重新执行一次函数,我们就陷入了死循环。这样也就失去了意义。所以斐波那契数列一定要有递归的结束条件。
day4 递归原理及解析的更多相关文章
- day4递归原理及实现
递归 特定: 递归算法是一种直接或者间接地调用自身算法的过程.在计算机编写程序中,递归算法对解决一大类问题十分有效,它往往是算法的描述简洁而且易于理解. 递归算法解决问题的特点: (1)递归就是在过程 ...
- DNS原理及其解析过程 精彩剖析
本文章转自下面:http://369369.blog.51cto.com/319630/812889 DNS原理及其解析过程 精彩剖析 网络通讯大部分是基于TCP/IP的,而TCP/IP是基于IP地址 ...
- GBDT算法原理深入解析
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...
- DNS原理及其解析过程【精彩剖析】(转)
2012-03-21 17:23:10 标签:dig wireshark bind nslookup dns 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否 ...
- java8Stream原理深度解析
Java8 Stream原理深度解析 Author:Dorae Date:2017年11月2日19:10:39 转载请注明出处 上一篇文章中简要介绍了Java8的函数式编程,而在Java8中另外一个比 ...
- (转)DNS原理及其解析过程
DNS原理及其解析过程原文:http://blog.51cto.com/369369/812889 网络通讯大部分是基于TCP/IP的,而TCP/IP是基于IP地址的,所以计算机在网络上进行通讯时只能 ...
- 转 DNS原理及其解析过程【精彩剖析】
DNS原理及其解析过程[精彩剖析] http://369369.blog.51cto.com/319630/812889/ DNS原理及其解析过程 精彩剖析 网络通讯大部分是基于T ...
- DNS原理及其解析过程【精彩剖析】
DNS原理及其解析过程[精彩剖析] 2012-03-21 17:23:10 标签:dig wireshark bind nslookup dns 原创作品,允许转载,转载时请务必以超链接形式标明文章 ...
- Vue双向数据绑定原理深度解析
首先,什么是双向数据绑定?Vue是三大MVVM框架之一,数据绑定简单来说,就是当数据发生变化时,相应的视图会进行更新,当视图更新时,数据也会跟着变化. 在分析其原理和代码的时候,大家首先了解如下几个j ...
随机推荐
- 【DP】【CF855C】 Helga Hufflepuff's Cup
Description 给你一个树,可以染 \(m\) 个颜色,定义一个特殊颜色 \(k\) , 要求保证整棵树上特殊颜色的个数不超过 \(x\) 个.同时,如果一个节点是特殊颜色,那么它的相邻节点的 ...
- mysql四-2:多表查询
一 介绍 本节主题 多表连接查询 复合条件连接查询 子查询 准备表 #建表 create table department( id int, name varchar(20) ); create ta ...
- LuaJavaBridge - lua与java互操作的简单解决方案
引入:Android平台代码和Lua代码的交互均通过C++和Java交互,Lua再和C++交互(lua <==> C++ <==> java) 我最开始遇见这种lua调用ja ...
- centos7安装ZABBIX 3.0+ 邮件报警【OK】
设置主机名: vi /etc/hosts 10.0.0.252 zabbix-server hostnamectl set-hostname 关闭防火墙: systemctl stop firew ...
- select、poll和epoll多路I/O复用
一.三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被 ...
- [DeeplearningAI笔记]序列模型1.1-1.2序列模型及其数学符号定义
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1什么是序列模型 在进行语音识别时,给定了一个输入音频片段X,并要求输出片段对应的文字记录Y,这个例子中的输入和输出都输 ...
- 转:Unable to execute dex: Multiple dex files define 解决方法
转自:http://blog.csdn.net/mxlxiao7/article/details/8978930 问题发生概述: 程序编译正常,在用Eclipse调试执行时,报错Unable to e ...
- vim 常用快捷键(整理版)
最常用: x 删除后面的字符 X 删除前一个字符 删除3个字符就是3x dd:删除一行 D 删除到行尾 J:删除换行符,使下一行并上来. nJ:连接后面的n行 u:撤销上一次操作 ...
- 拓扑排序 最大字典序+优先队列 BZOJ 4010
http://www.lydsy.com/JudgeOnline/problem.php?id=4010 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory ...
- 2015/11/1用Python写游戏,pygame入门(1):pygame的安装
这两天学习数据结构和算法,有时感觉并不如直接做项目来的有趣.刚刚学完python的基本使用,现在刚好趁热打铁做个小项目. 由于本人一直很想制作一款游戏,就想使用Python制作一个基础的游戏.搜了一下 ...