洛谷P3812 【模板】线性基 [线性基]
线性基
题目描述
给定n个整数(数字可能重复),求在这些数中选取任意个,使得他们的异或和最大。
输入输出格式
输入格式:
第一行一个数n,表示元素个数
接下来一行n个数
输出格式:
仅一行,表示答案。
输入输出样例
2
1 1
1
说明
$1 \leq n \leq 50, 0 \leq S_i \leq 2 ^ {50}$
分析:
一道线性基模板。<不会线性基的看这里>
直接构造线性基然后贪心选取异或得到最大答案即可.
Code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
ll n,b[N],ans;
int main()
{
scanf("%lld",&n);ll x;
for(ll i=;i<=n;i++){
scanf("%lld",&x);
for(ll j=;j>=;j--){
if(!(x>>j))continue;
if(!b[j]){b[j]=x;break;}
else x^=b[j]; }
}
for(ll i=;i>=;i--){
if((ans^b[i])>ans)ans^=b[i];}
printf("%lld",ans);
return ;
}
洛谷P3812 【模板】线性基 [线性基]的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷CF895C Square Subsets(线性基)
洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...
- 【题解】洛谷P1070 道路游戏(线性DP)
次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
随机推荐
- 前端PHP入门-021-重点日期函数之日期验证函数
checkdate可以判断一个输出的日期是否有效. 在实际的工作中,我们需要经常用于检测常用于用户提交表单的数据验证. 函数的语法格式如下: bool checkdate ( int month,in ...
- bzoj 2375: 疯狂的涂色
2375: 疯狂的涂色 Time Limit: 5 Sec Memory Limit: 128 MB Description 小t非常喜爱画画,但是他还是一个初学者.他最近费尽千辛万苦才拜到已仙逝的 ...
- linux 中 permission denied的问题
想在linux中运行一个脚步,却提示permission denied. 文件权限不允许. 为了获得执行权限,借助chmod指令修改文件权限即可. 1.如果是运行程序时出现此提示,一般执行chmod ...
- 【BZOJ】1597 [Usaco2008 Mar]土地购买
[算法]DP+斜率优化 [题意]n(n≤50000)块土地,长ai宽bi,可分组购买,每组代价为max(ai)*max(bi),求最小代价. [题解] 斜率优化:http://www.cnblogs. ...
- GD库imagecopyresampled()方法详解~
整理了一下GD库这个缩放,拉伸复制的方法 因为这个函数参数太多了~ imagecopyresampled() /* //拷贝部分图像并调整大小 bool imagecopyresampled ( ...
- 在Unity中实现屏幕空间反射Screen Space Reflection(1)
本篇文章我会介绍一下我自己在Unity中实现的SSR效果 出发点是理解SSR效果的原理,因此最终效果不是非常完美的(代码都是够用就行),但是从学习的角度来说足以学习到SSR中的核心算法. 如果对核心算 ...
- 面试整理(2)跨域:jsonp与CORS
问题:跨域有哪些方法?jsonp的原理是什么? jsonp: 先说jsonp,jsonp的主要原理是利用script标签的src可以跨域请求,据说有src属性的都可以跨域请求,但script标签返回的 ...
- php的发展历史
php最初就是为了快速构建一个web页面而迅速被大家广为接受的.它的好处是在代码中能内嵌html的代码,从而让程序员能再一个页面中同时写html代码和php代码就能生成一个web页面. 这篇文章用时间 ...
- (转)USB 基本知识
USB的重要关键字: 1.端点:位于USB设备或主机上的一个数据缓冲区,用来存放和发送USB的各种数据,每一个端点都有惟一的确定地址,有不同的传输特性(如输入端点.输出端点.配置端点.批量传输端点) ...
- 64_p7
python-flask-whooshalchemy-0.6-10.fc26.noarch.rpm 12-Feb-2017 11:04 51894 python-flask-wtf-0.10.0-8. ...