[hdu5251]矩形面积 旋转卡壳求最小矩形覆盖
旋转卡壳求最小矩形覆盖的模板题。
因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<cstdlib>
#include<cmath>
#include<list>
using namespace std;
#define MAXN 100100
#define eps 1e-9
#define For(i,a,b) for(int i=a;i<=b;i++)
#define Fore(i,a,b) for(int i=a;i>=b;i--)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define mkp make_pair
#define pb push_back
#define cr clear()
#define sz size()
#define met(a,b) memset(a,b,sizeof(a))
#define iossy ios::sync_with_stdio(false)
#define fre freopen
#define pi acos(-1.0)
#define inf 1e6+7
#define Vector Point
const int Mod=1e9+;
typedef unsigned long long ull;
typedef long long ll;
int dcmp(double x){
if(fabs(x)<=eps) return ;
return x<?-:;
}
struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
bool operator < (const Point &a)const{
if(x==a.x) return y<a.y;
return x<a.x;
}
Point operator - (const Point &a)const{
return Point(x-a.x,y-a.y);
}
Point operator + (const Point &a)const{
return Point(x+a.x,y+a.y);
}
Point operator * (const double &a)const{
return Point(x*a,y*a);
}
Point operator / (const double &a)const{
return Point(x/a,y/a);
}
void read(){
scanf("%lf%lf",&x,&y);
}
void out(){
cout<<"debug: "<<x<<" "<<y<<endl;
}
bool operator == (const Point &a)const{
return dcmp(x-a.x)== && dcmp(y-a.y)==;
}
};
double Dot(Vector a,Vector b) {
return a.x*b.x+a.y*b.y;
}
double dis(Vector a) {
return sqrt(Dot(a,a));
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
int ConvexHull(Point *p,int n,Point *ch){
int m=;
For(i,,n-) {
while(m> && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
int k=m;
Fore(i,n-,){
while(m>k && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
if(n>) m--;
return m;
}
double ANS(Point *p,int n){
int L,R=,U=;
double ans=1e9+;
p[n]=p[];
For(i,,n-) {
while(Cross(p[i+]-p[i],p[U+]-p[i])>=Cross(p[i+]-p[i],p[U]-p[i])) U=(U+)%n;
while(Dot(p[i+]-p[i],p[R+]-p[i])>Dot(p[i+]-p[i],p[R]-p[i])) R=(R+)%n;
if(!i) L=R;
while(Dot(p[i+]-p[i],p[L+]-p[i])<=Dot(p[i+]-p[i],p[L]-p[i])) L=(L+)%n;
double tmp=fabs(Cross(p[U]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]);
double cnt1=fabs(Dot(p[L]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]),cnt2=fabs(Dot(p[R]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]);
ans=min(ans,(cnt2+cnt1)*tmp);
}
return ans;
}
int n,m;
Point p[];
Point ch[];
void solve(){
scanf("%d",&n);
int rt=;
For(i,,n-) {
p[rt++].read();
p[rt++].read();
p[rt++].read();
p[rt++].read();
}
sort(p,p+rt);
m=ConvexHull(p,rt,ch);
printf("%.0lf\n",ANS(ch,m));
}
int main(){
// fre("in.txt","r",stdin);
int t=;
cin>>t;
For(i,,t) printf("Case #%d:\n",i),solve();
return ;
}
[hdu5251]矩形面积 旋转卡壳求最小矩形覆盖的更多相关文章
- HDU 5251 矩形面积 (旋转卡壳)
2015年百度之星程序设计大赛 - 初赛(1) 1006 比赛链接:2015年百度之星程序设计大赛 - 初赛(1) 题目链接:HDU 5251 Problem Description 小度熊有一个桌面 ...
- TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)
描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...
- POJ 2079 Triangle 旋转卡壳求最大三角形
求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...
- UVa 1453 - Squares 旋转卡壳求凸包直径
旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...
- poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方
旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...
- POJ2187 旋转卡壳 求最长直径
给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...
- hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)
链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
随机推荐
- [DeeplearningAI笔记]卷积神经网络3.10候选区域region proposals与R-CNN
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.10 region proposals候选区域与R-CNN 基于滑动窗口的目标检测算法将原始图片分割成小的样本图片,并传入分 ...
- 跟我一起写Makefile(四)
书写命令———— 每条规则中的命令和操作系统Shell的命令行是一致的.make会一按顺序一条一条的执行命令,每条命令的开头必须以[Tab]键开头,除非,命令是紧跟在依赖规则后面的分号后的.在命令行之 ...
- React Native 入门笔记一 -- Windows下基本环境配置
一.准备工作 首先,需要安装nodejs,可以从nodejs官网下载,注意,React Native 要求node版本在4.0或以上:否则会出错,我建议把node版本升到最新版本,防止后面出现各种莫名 ...
- 从ZoomEye API 到 Weblogic 弱口令扫描
参考资料: ZoomEye API: https://www.zoomeye.org/api/doc Weblogic-Weakpassword-Scnner: https://github.com/ ...
- WordPress手机端插件——WPtouch
戒微博之后,把更多的精力开始转投回网站上来:今天用nexus7访问@Bee君 的博客时,发现博客的界面与电脑上访问的界面不相同,顺藤摸瓜之后发现原来bee君使用的是WPtouch-pro插件来实现移动 ...
- Java爬虫(二)
上一篇简单的实现了获取url返回的内容,在这一篇就要第返回的内容进行提取,并将结果保存到html中.而且这个爬虫是基于python爬虫的java语言实现,其逻辑大致相同. 一 . 需求: 抓取主页面: ...
- 搭建linux+nginx+mysql+php环境
yum install -y gcc gcc-c++ make zlib zlib-devel pcre pcre-devel libjpeg libjpeg-devel libpng libpn ...
- mysqldump 逻辑备份的正确方法【转】
1. 利用mysqldump进行逻辑备份 1)全逻辑备份: mysqldump -uxxx -p --flush-logs --delete-master-logs --all-databases & ...
- 端口扫描———nmap
nmap教程之nmap命令使用示例(nmap使用方法) 浏览:8268 | 更新:2014-03-29 17:23 Nmap是一款网络扫描和主机检测的非常有用的工具.Nmap是不局限于仅仅收集信息和枚 ...
- java并发编程实战笔记---(第五章)基础构建模块
. 5.1同步容器类 1.同步容器类的问题 复合操作,加容器内置锁 2.迭代器与concurrentModificationException 迭代容器用iterator, 迭代过程中,如果有其他线程 ...