旋转卡壳求最小矩形覆盖的模板题。

  因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<cstdlib>
#include<cmath>
#include<list>
using namespace std;
#define MAXN 100100
#define eps 1e-9
#define For(i,a,b) for(int i=a;i<=b;i++)
#define Fore(i,a,b) for(int i=a;i>=b;i--)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define mkp make_pair
#define pb push_back
#define cr clear()
#define sz size()
#define met(a,b) memset(a,b,sizeof(a))
#define iossy ios::sync_with_stdio(false)
#define fre freopen
#define pi acos(-1.0)
#define inf 1e6+7
#define Vector Point
const int Mod=1e9+;
typedef unsigned long long ull;
typedef long long ll;
int dcmp(double x){
if(fabs(x)<=eps) return ;
return x<?-:;
}
struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
bool operator < (const Point &a)const{
if(x==a.x) return y<a.y;
return x<a.x;
}
Point operator - (const Point &a)const{
return Point(x-a.x,y-a.y);
}
Point operator + (const Point &a)const{
return Point(x+a.x,y+a.y);
}
Point operator * (const double &a)const{
return Point(x*a,y*a);
}
Point operator / (const double &a)const{
return Point(x/a,y/a);
}
void read(){
scanf("%lf%lf",&x,&y);
}
void out(){
cout<<"debug: "<<x<<" "<<y<<endl;
}
bool operator == (const Point &a)const{
return dcmp(x-a.x)== && dcmp(y-a.y)==;
}
};
double Dot(Vector a,Vector b) {
return a.x*b.x+a.y*b.y;
}
double dis(Vector a) {
return sqrt(Dot(a,a));
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
int ConvexHull(Point *p,int n,Point *ch){
int m=;
For(i,,n-) {
while(m> && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
int k=m;
Fore(i,n-,){
while(m>k && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
if(n>) m--;
return m;
}
double ANS(Point *p,int n){
int L,R=,U=;
double ans=1e9+;
p[n]=p[];
For(i,,n-) {
while(Cross(p[i+]-p[i],p[U+]-p[i])>=Cross(p[i+]-p[i],p[U]-p[i])) U=(U+)%n;
while(Dot(p[i+]-p[i],p[R+]-p[i])>Dot(p[i+]-p[i],p[R]-p[i])) R=(R+)%n;
if(!i) L=R;
while(Dot(p[i+]-p[i],p[L+]-p[i])<=Dot(p[i+]-p[i],p[L]-p[i])) L=(L+)%n;
double tmp=fabs(Cross(p[U]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]);
double cnt1=fabs(Dot(p[L]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]),cnt2=fabs(Dot(p[R]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]);
ans=min(ans,(cnt2+cnt1)*tmp);
}
return ans;
}
int n,m;
Point p[];
Point ch[];
void solve(){
scanf("%d",&n);
int rt=;
For(i,,n-) {
p[rt++].read();
p[rt++].read();
p[rt++].read();
p[rt++].read();
}
sort(p,p+rt);
m=ConvexHull(p,rt,ch);
printf("%.0lf\n",ANS(ch,m));
}
int main(){
// fre("in.txt","r",stdin);
int t=;
cin>>t;
For(i,,t) printf("Case #%d:\n",i),solve();
return ;
}

[hdu5251]矩形面积 旋转卡壳求最小矩形覆盖的更多相关文章

  1. HDU 5251 矩形面积 (旋转卡壳)

    2015年百度之星程序设计大赛 - 初赛(1) 1006 比赛链接:2015年百度之星程序设计大赛 - 初赛(1) 题目链接:HDU 5251 Problem Description 小度熊有一个桌面 ...

  2. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

  3. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  4. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. POJ2187 旋转卡壳 求最长直径

    给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...

  7. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  8. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  9. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

随机推荐

  1. 前端PHP入门-027-数组常用函数-掌握级别

    下面的函数一定要到熟悉甚至到掌握级别. 这些函数,也是面试中基础面试中最爱问到的问题. 函数名 功能 array_combine() 生成一个数组,用一个数组的值作为键名,另一个数组值作为值 rang ...

  2. Ubuntu+NDK编译支持HTTPS的libcurl

    参考文章:1.NDK环境配置 http://blog.csdn.net/smfwuxiao/article/details/65877092.libcurl的配置修改 http://piggyq.co ...

  3. windows下启动mysql服务的命令行启动和手动启动方法

    1.图形界面下启动mysql服务. 在图形界面下启动mysql服务的步骤如下: (1)打开控制面板->管理工具->服务,如下图所示: 可以看到Mysql服务目前的状态是未启动(未写已启动的 ...

  4. 【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)

    题目链接 一开始我的\(dp\)方程列错了,其实也不能说列错了,毕竟我交上去还是把暴力的分都拿到了,只是和题解的不一样,然后搞半天没搞出来去看题解,又看不懂,对不上,原来状态设置不一样自闭了. \(f ...

  5. 47、Python面向对象中的继承有什么特点?

    继承的优点: 1.建造系统中的类,避免重复操作. 2.新类经常是基于已经存在的类,这样就可以提升代码的复用程度. 继承的特点: 1.在继承中基类的构造(__init__()方法)不会被自动调用,它需要 ...

  6. LOW逼三人组(三)----插入排序

    插入排序思路 插入排序算法: import random # 随机模块 import time def cal_time(func): # 装饰器 ,用来检测算法所执行的时间 def wrapper( ...

  7. 使用Burpsuite爆破弱口令教工号

    使用Burpsuite爆破弱口令教工号 发表于 2015-11-18   |   分类于 Burpsuite  |   1条评论  |   26次阅读 准备 所谓工欲善其事,必先利其器,首先当然是要下 ...

  8. Android SDK的安装与环境变量的配置

    配置Andriod环境变量前提是要先安装好JAVA环境 1.下载Android SDK,点击安装,放在任意不含空格.特殊符号和中文的路径即可. 2.默认路径安装后,安装完成,开始配置环境变量. 3.打 ...

  9. atoll()函数使用注意事项及分析

    atoll是c99标准加入的函数,在编译的时候可能要打开C99标准的编译选项 -std=c99. 另外,必须包含stdlib.h头文件,否则会出错. ☞ C程序代码如下所示: #include < ...

  10. 微信access_token和refresh_token保存于redis

    简介 通常理解的access_token和refresh_token access_token是用来对客户端进行认证的,类似与密码,有一定的有效期.当过期后可使用refresh_token重新获取一个 ...