旋转卡壳求最小矩形覆盖的模板题。

  因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<cstdlib>
#include<cmath>
#include<list>
using namespace std;
#define MAXN 100100
#define eps 1e-9
#define For(i,a,b) for(int i=a;i<=b;i++)
#define Fore(i,a,b) for(int i=a;i>=b;i--)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define mkp make_pair
#define pb push_back
#define cr clear()
#define sz size()
#define met(a,b) memset(a,b,sizeof(a))
#define iossy ios::sync_with_stdio(false)
#define fre freopen
#define pi acos(-1.0)
#define inf 1e6+7
#define Vector Point
const int Mod=1e9+;
typedef unsigned long long ull;
typedef long long ll;
int dcmp(double x){
if(fabs(x)<=eps) return ;
return x<?-:;
}
struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
bool operator < (const Point &a)const{
if(x==a.x) return y<a.y;
return x<a.x;
}
Point operator - (const Point &a)const{
return Point(x-a.x,y-a.y);
}
Point operator + (const Point &a)const{
return Point(x+a.x,y+a.y);
}
Point operator * (const double &a)const{
return Point(x*a,y*a);
}
Point operator / (const double &a)const{
return Point(x/a,y/a);
}
void read(){
scanf("%lf%lf",&x,&y);
}
void out(){
cout<<"debug: "<<x<<" "<<y<<endl;
}
bool operator == (const Point &a)const{
return dcmp(x-a.x)== && dcmp(y-a.y)==;
}
};
double Dot(Vector a,Vector b) {
return a.x*b.x+a.y*b.y;
}
double dis(Vector a) {
return sqrt(Dot(a,a));
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
int ConvexHull(Point *p,int n,Point *ch){
int m=;
For(i,,n-) {
while(m> && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
int k=m;
Fore(i,n-,){
while(m>k && Cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
if(n>) m--;
return m;
}
double ANS(Point *p,int n){
int L,R=,U=;
double ans=1e9+;
p[n]=p[];
For(i,,n-) {
while(Cross(p[i+]-p[i],p[U+]-p[i])>=Cross(p[i+]-p[i],p[U]-p[i])) U=(U+)%n;
while(Dot(p[i+]-p[i],p[R+]-p[i])>Dot(p[i+]-p[i],p[R]-p[i])) R=(R+)%n;
if(!i) L=R;
while(Dot(p[i+]-p[i],p[L+]-p[i])<=Dot(p[i+]-p[i],p[L]-p[i])) L=(L+)%n;
double tmp=fabs(Cross(p[U]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]);
double cnt1=fabs(Dot(p[L]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]),cnt2=fabs(Dot(p[R]-p[i],p[i+]-p[i]))/dis(p[i+]-p[i]);
ans=min(ans,(cnt2+cnt1)*tmp);
}
return ans;
}
int n,m;
Point p[];
Point ch[];
void solve(){
scanf("%d",&n);
int rt=;
For(i,,n-) {
p[rt++].read();
p[rt++].read();
p[rt++].read();
p[rt++].read();
}
sort(p,p+rt);
m=ConvexHull(p,rt,ch);
printf("%.0lf\n",ANS(ch,m));
}
int main(){
// fre("in.txt","r",stdin);
int t=;
cin>>t;
For(i,,t) printf("Case #%d:\n",i),solve();
return ;
}

[hdu5251]矩形面积 旋转卡壳求最小矩形覆盖的更多相关文章

  1. HDU 5251 矩形面积 (旋转卡壳)

    2015年百度之星程序设计大赛 - 初赛(1) 1006 比赛链接:2015年百度之星程序设计大赛 - 初赛(1) 题目链接:HDU 5251 Problem Description 小度熊有一个桌面 ...

  2. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

  3. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  4. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. POJ2187 旋转卡壳 求最长直径

    给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...

  7. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  8. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  9. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

随机推荐

  1. [DeeplearningAI笔记]卷积神经网络3.10候选区域region proposals与R-CNN

    4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.10 region proposals候选区域与R-CNN 基于滑动窗口的目标检测算法将原始图片分割成小的样本图片,并传入分 ...

  2. 跟我一起写Makefile(四)

    书写命令———— 每条规则中的命令和操作系统Shell的命令行是一致的.make会一按顺序一条一条的执行命令,每条命令的开头必须以[Tab]键开头,除非,命令是紧跟在依赖规则后面的分号后的.在命令行之 ...

  3. React Native 入门笔记一 -- Windows下基本环境配置

    一.准备工作 首先,需要安装nodejs,可以从nodejs官网下载,注意,React Native 要求node版本在4.0或以上:否则会出错,我建议把node版本升到最新版本,防止后面出现各种莫名 ...

  4. 从ZoomEye API 到 Weblogic 弱口令扫描

    参考资料: ZoomEye API: https://www.zoomeye.org/api/doc Weblogic-Weakpassword-Scnner: https://github.com/ ...

  5. WordPress手机端插件——WPtouch

    戒微博之后,把更多的精力开始转投回网站上来:今天用nexus7访问@Bee君 的博客时,发现博客的界面与电脑上访问的界面不相同,顺藤摸瓜之后发现原来bee君使用的是WPtouch-pro插件来实现移动 ...

  6. Java爬虫(二)

    上一篇简单的实现了获取url返回的内容,在这一篇就要第返回的内容进行提取,并将结果保存到html中.而且这个爬虫是基于python爬虫的java语言实现,其逻辑大致相同. 一 . 需求: 抓取主页面: ...

  7. 搭建linux+nginx+mysql+php环境

    yum install -y gcc gcc-c++  make zlib zlib-devel pcre pcre-devel  libjpeg libjpeg-devel libpng libpn ...

  8. mysqldump 逻辑备份的正确方法【转】

    1. 利用mysqldump进行逻辑备份 1)全逻辑备份: mysqldump -uxxx -p --flush-logs --delete-master-logs --all-databases & ...

  9. 端口扫描———nmap

    nmap教程之nmap命令使用示例(nmap使用方法) 浏览:8268 | 更新:2014-03-29 17:23 Nmap是一款网络扫描和主机检测的非常有用的工具.Nmap是不局限于仅仅收集信息和枚 ...

  10. java并发编程实战笔记---(第五章)基础构建模块

    . 5.1同步容器类 1.同步容器类的问题 复合操作,加容器内置锁 2.迭代器与concurrentModificationException 迭代容器用iterator, 迭代过程中,如果有其他线程 ...