题目:Problem K. Piecemaking
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 512 mebibytes
The civil war in Berland continues for five years already. The United Nation decided to end the bloodshed.
Berland consists of n cities, connected by n - 1 bidirectional roads, forming a tree. The Purple Army
occupies several cities which are listed in the set A, and the Cian Army occupies cities listed in the set
B. The UN Assembly took an unexpected decision to end the war: they decided to destroy some roads
in Berland, so that no city from the set A is connected (directly or undirectly) with a city from the set
B. This way the enemies wouldn’t be able to reach each other, and the fighting would stop. Destroying
a road of length x kilometers requires x dollars.
Find the minimum sum of money neccessary for peacemaking in Berland.
Input
The first line of the input contains a positive integer n (2 ≤ n ≤ 200 000) — the number of cities in
Berland.
Next n - 1 lines contain information about roads in the form ui, vi, wi (1 ≤ ui; vi ≤ n, 1 ≤ wi ≤ 109) —
indices of cities connected by the i-th road, and the length of this road in kilometers.
The next line contains a positive integer m (1 ≤ m ≤ n) — the number of cities occupied by the Purple
Army, and m distinct integers a1; a2; : : : ; am (1 ≤ ai ≤ n) — indices of these cities.
The next line contains a positive integer k (1 ≤ k ≤ n) and k distinct integers b1; b2; : : : ; bk (1 ≤ bi ≤ n) —
the cities, occupied by the Cian army, in the similar format.
It is guaranteed that no city is occupied by both armies.
Output
Print the minimum possible number of dollars required to make it impossible to reach any city in set B
from any city in set A.
Example

standard input standard output
6
1 2 5
2 4 4
2 5 1
1 3 2
3 6 7
1 4
2 5 6
3

思路:

  比较简单的树dp:dp[i][s]:表示这个点属于空集合,还是A集合,还是B集合?

  转移过程略麻烦。

 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=1e6+;
const int mod=1e9+; vector<PII>mp[K];
int n,m,col[K];
LL dp[K][]; void dfs(int u,int f)
{
for(auto v:mp[u])if(v.first!=f) dfs(v.first,u);
for(auto v:mp[u])if(v.first!=f)
{
if(col[u]==)
{
if(col[v.first]==)
{
dp[u][]+=min(dp[v.first][],min(dp[v.first][],dp[v.first][])+v.second);
dp[u][]+=min(min(dp[v.first][],dp[v.first][]),dp[v.first][]+v.second);
dp[u][]+=min(min(dp[v.first][],dp[v.first][]),dp[v.first][]+v.second);
}
else if(col[v.first]==)
{
dp[u][]+=dp[v.first][]+v.second;
dp[u][]+=dp[v.first][];
dp[u][]+=dp[v.first][]+v.second;
}
else
{
dp[u][]+=dp[v.first][]+v.second;
dp[u][]+=dp[v.first][]+v.second;
dp[u][]+=dp[v.first][];
}
}
else if(col[u]==)
{
if(col[v.first]==)
dp[u][]+=min(min(dp[v.first][],dp[v.first][]),dp[v.first][]+v.second);
else if(col[v.first]==)
dp[u][]+=dp[v.first][];
else
dp[u][]+=dp[v.first][]+v.second;
}
else
{
if(col[v.first]==)
dp[u][]+=min(min(dp[v.first][],dp[v.first][]),dp[v.first][]+v.second);
else if(col[v.first]==)
dp[u][]+=dp[v.first][]+v.second;
else
dp[u][]+=dp[v.first][];
}
}
if(col[u]==) dp[u][]=dp[u][]=2e14;
else if(col[u]==) dp[u][]=dp[u][]=2e14;
//printf("%d==%lld %lld %lld\n",u,dp[u][0],dp[u][1],dp[u][2]);
}
int main(void)
{
scanf("%d",&n);
for(int i=,x,y,z;i<n;i++)
scanf("%d%d%d",&x,&y,&z),mp[x].PB(MP(y,z)),mp[y].PB(MP(x,z));
scanf("%d",&m);
for(int i=,x;i<=m;i++) scanf("%d",&x),col[x]=;
scanf("%d",&m);
for(int i=,x;i<=m;i++) scanf("%d",&x),col[x]=;
dfs(,);
printf("%lld\n",min(min(dp[][],dp[][]),dp[][]));
return ;
}

XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem K. Piecemaking的更多相关文章

  1. XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem D. Great Again

    题目: Problem D. Great AgainInput file: standard inputOutput file: standard outputTime limit: 2 second ...

  2. 【分块】【暴力】XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem I. Rage Minimum Query

    1000w的数组,一开始都是2^31-1,然后经过5*10^7次随机位置的随机修改,问你每次的全局最小值. 有效的随机修改的期望次数很少,只有当修改到的位置恰好是当前最小值的位置时才需要扫一下更新最小 ...

  3. XVII Open Cup named after E.V. Pankratiev. Grand Prix of America (NAIPC-2017)

    A. Pieces of Parentheses 将括号串排序,先处理会使左括号数增加的串,这里面先处理减少的值少的串:再处理会使左括号数减少的串,这里面先处理差值较大的串.确定顺序之后就可以DP了. ...

  4. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of SPb

    A. Base $i - 1$ Notation 两个性质: $2=1100$ $122=0$ 利用这两条性质实现高精度加法即可. 时间复杂度$O(n)$. #include<stdio.h&g ...

  5. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Siberia

    1. GUI 按题意判断即可. #include<stdio.h> #include<iostream> #include<string.h> #include&l ...

  6. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Peterhof

    A. City Wall 找规律. #include<stdio.h> #include<iostream> #include<string.h> #include ...

  7. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Khamovniki

    A. Ability Draft 记忆化搜索. #include<stdio.h> #include<iostream> #include<string.h> #i ...

  8. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Korea

    A. Donut 扫描线+线段树. #include<cstdio> #include<algorithm> using namespace std; typedef long ...

  9. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Saratov

    A. Three Arrays 枚举每个$a_i$,双指针出$b$和$c$的范围,对于$b$中每个预先双指针出$c$的范围,那么对于每个$b$,在对应$c$的区间加$1$,在$a$处区间求和即可. 树 ...

随机推荐

  1. DBA面试题及解答

    一:SQL tuning 类 1:列举几种表连接方式答:merge join,hash join,nested loop Hash join散列连接是CBO 做大数据集连接时的常用方式,优化器使用两个 ...

  2. Android音视频学习第7章:使用OpenSL ES进行音频解码

    /* * *这里使用了transcode-1.1.7对wav文件进行解码.然后使用opensl es进行播放 * */ //用到的变量和结构体 WAV wav; //wav文件指针 SLObjectI ...

  3. .Net CCNet C#6.0 自动化编译问题解决

    一.问题描述 由于C#6.0一些新的语法特性,导致先前部署的CCNet持续集成平台出现问题,无论是手动还是命令行均不能编译.   二.解决方案 1.下载BuildTools_Full.exe,地址:h ...

  4. UE4中VR模式下窗口单目双目的问题

    如果要是单目的话使用HMD MIRROR MODE 3或者4  

  5. centos7 docker install

    env: os :centos 7 vmware steps: 1.yum  -y install docker after installed ,using   docker version cmd ...

  6. angular4 组件间通信

    父传子用@input 子传父用@output 例:子组件 <p> <span *ngFor="let star of stars;let i=index" cla ...

  7. Struts2中的拦截器详解

    exception:异常拦截器,拦截异常aliasservletConfig18nprepare:预备拦截器,这个拦截器就是为了ModelDriven准备对象的,若Action类实现了preparab ...

  8. 在Ubuntu上搭建hive环境

    一.准备软件 二.安装虚拟机 1.新建虚拟机向导 2.安装客户机操作系统 3.用户名密码设置 4.设置虚拟机名称和保存位置 5.处理器设置 6.设置虚拟机内存 7.然后一直next下去(有的根据自己的 ...

  9. Linux压缩解压缩(unzip,tar)

    unzip tar 常用解压缩命令: tar -zxvpf:解压缩 tar -zcvpf: 压缩 # tar [-j|-z] [cv] [-f 建立的檔名] filename... <==打包与 ...

  10. Exchange OAB(Offline Address Book)

    If Outlook is left running constantly in Cached Exchange Mode, it updates the Offline Address Book a ...