sg[i]为0表示i节点先手必败。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;

x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

以此类推.....

x         0  1  2  3  4  5  6  7  8....

sg[x]      0  1  0  1  2  3  2  0  1....

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

f[]需要从小到大排序

1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);

2.可选步数为任意步,SG(x) = x;

3.可选步数为一系列不连续的数,用GetSG()计算

【实战】:

例1

  HDU1848 Fibonacci again and again

例2

  HDU1536 S-Nim

SG函数入门的更多相关文章

  1. HDU 1848 Fibonacci again and again(SG函数入门)题解

    思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...

  2. SG函数入门&&HDU 1848

    SG函数 sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3. ...

  3. sg函数入门理解

    首先理解sg函数必须先理解mex函数 mex是求除它集合内的最小大于等于0的整数,例:mex{1,2}=0:mex{2}=0:mex{0,1,2}=3:mex{0,5}=1. 而sg函数是啥呢? 对于 ...

  4. (巴什博弈 sg函数入门1) Brave Game -- hdu -- 1846

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1846 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则: ...

  5. [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)

    今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...

  6. hdu1536&&hdu3023 SG函数模板及其运用

    S-Nim Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status ...

  7. Light OJ 1296 - Again Stone Game (博弈sg函数递推)

    F - Again Stone Game Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  8. SG函数

    入门一: 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则:游戏双方轮流取牌:每人每次仅限于取1张.2张或3张牌:扑克牌取光,则游戏结束:最后取牌的一方 ...

  9. SG函数的理解集应用

    转载自知乎牛客竞赛——博弈论入门(函数讲解+真题模板) SG函数 作用 对于一个状态i为先手必胜态当且仅当SG(i)!=0. 转移 那怎么得到SG函数尼. SG(i)=mex(SG(j))(状态i可以 ...

随机推荐

  1. [SDOI2016Round1]解题报告

    Day1 T1: 题意:求∑n−1i=0∑m−1j=0max((i xor j)−k,0) 由于是抑或操作.每一位都是独立的,所以能够一位一位的算贡献. f[i][a][b][c]表示第i位时.每一个 ...

  2. 用Visual studio2012在Windows8上开发内核驱动监视进程创建

    在Windows NT中,80386保护模式的“保护”比Windows 95中更坚固,这个“镀金的笼子”更加结实,更加难以打破.在Windows 95中,至少应用程序I/O操作是不受限制的,而在Win ...

  3. 《转》CentOS7 安装MongoDB 3.0server (3.0的优势)

    1.下载&安装 MongoDB 3.0 正式版本号公布!这标志着 MongoDB 数据库进入了一个全新的发展阶段,提供强大.灵活并且易于管理的数据库管理系统.MongoDB宣称.3.0新版本号 ...

  4. atoi 和 itoa

    转自:http://www.cnblogs.com/cobbliu/archive/2012/08/25/2656176.html atoi 和 itoa是面试笔试经常要考到的题目,下面两份代码是用C ...

  5. 关闭windows打印服务

    1.关闭打印服务:开始-运行-services.msc或打开控制面板-管理工具-服务,打开服务列表,找到Print Spooler(打印服务),关闭(右击,点“关闭”).2.删除打印缓存:进入c:\\ ...

  6. JVM虚拟机(三):参数配置

    在虚拟机运行的过程中,如果可以跟踪系统的运行状态,那么对于问题的故障排查会有一定的帮助,为此,虚拟机提供了一些跟踪系统状态的参数,使用给顶的参数执行java虚拟机,就可以在系统运行时打印相关日志,用于 ...

  7. Ubuntu下如何检查文件的md5,sha-512码

    ubuntu自带程序md5sum,sha512sum md5sum filename sha512sum filename 即可.

  8. Windows 8.1下安装Mac OS X 10.8虚拟机

    转载自http://blog.csdn.net/jordanxinwang/article/details/43637799 1.准备 宿主操作系统:Windows 8.1 64位.特别地,需要CPU ...

  9. 一款基于css3鼠标经过圆形旋转特效

    今天给大家分享一款基于css3鼠标经过圆形旋转特效.当鼠标经过的时候图片边框颜色旋转,图片显示详情.该实例适用浏览器:IE8.360.FireFox.Chrome.Safari.Opera.傲游.搜狗 ...

  10. mysql学习笔记2--mysql的基本使用

    4. 运行和关闭MySQL服务器 首先检查MySQL服务器正在运行与否.在资源管理器查看有没有mysqld的进程,如果MySQL正在运行,那么会看到列出来的 mysqld 进程.如果服务器没有运行,那 ...