原创博文,转载请注明出处!

1.AUC

AUC(Area Under ROC Curve),即ROC曲线下面积。

2.AUC意义

若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于学习器A的性能;若学习器A的ROC曲线和学习器B的ROC曲线交叉,则比较二者ROC曲线下的面积大小,即比较AUC的大小,AUC值越大,性能越好。

3.sklearn中计算AUC值的方法

  • 形式:

from sklearn.metrics import roc_auc_score

auc_score = roc_auc_score(y_test,y_pred)

  • 说明:
    • y_pred即可以是类别,也可以是概率。
    • roc_auc_score直接根据真实值和预测值计算auc值,省略计算roc的过程。
  1 # -*- coding: utf-8 -*-
2 """
3 # 作者:wanglei5205
4 # 邮箱:wanglei5205@126.com
5 # 博客:http://cnblogs.com/wanglei5205
6 # github:http://github.com/wanglei5205
7 """
8
9 ### 真实值和预测值
10 import numpy as np
11 y_test = np.array([0,0,1,1])
12 y_pred1 = np.array([0.3,0.2,0.25,0.7])
13 y_pred2 = np.array([0,0,1,0])
14
15 ### 性能度量auc
16 from sklearn.metrics import roc_auc_score
17
18 # 预测值是概率
19 auc_score1 = roc_auc_score(y_test,y_pred1)
20 print(auc_score1)
21
22 # 预测值是类别
23 auc_score2 = roc_auc_score(y_test,y_pred2)
24 print(auc_score2)

[sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)的更多相关文章

  1. 【sklearn】性能度量指标之ROC曲线(二分类)

    原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 ...

  2. 机器学习性能度量指标:AUC

    在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     ...

  3. 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC

    文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...

  4. 机器学习实战笔记(Python实现)-07-模型评估与分类性能度量

    1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(acc ...

  5. 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

    准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...

  6. 性能度量之Confusion Matrix

    例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...

  7. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

  8. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  9. Mean Average Precision(mAP),Precision,Recall,Accuracy,F1_score,PR曲线、ROC曲线,AUC值,决定系数R^2 的含义与计算

    背景   之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任 ...

随机推荐

  1. jQuery的$.each()遍历checkbox

    $("input[type='checkbox']").each(function(){ var value = $(this).val(); //获得值 $(this).attr ...

  2. javaScript实现点击按钮直接打印

    很多网站都有此功能,当浏览到底部时都会有一个打印按钮,点击打印按钮就可以完成打印功能,功能非常不错,人性化,代码非常的简单. 一.只要调用window.print()函数就可以实现打印当前页面 < ...

  3. Pandas教程目录

    Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...

  4. iOS学习-字符串的删除替换

    字符串的常用处理,删除,替换.记录一下,方便查找. -------------------------------------------------------------------------- ...

  5. [sping]xml配置文件中factory-bean与factory-method(spring使用工厂方法注入bean)

    public class CarFactory { //非静态方法 public Car createCar(){ Car car = new Car(); car.setBrand("BM ...

  6. Spring自定义注解扫描的实现

    目标:实现自定义spring自动扫描注解.主要为后期实现分布式服务框架自动注解提供技术支持 技术分析:通过配置组件扫描标签使spring解析标签. 1. JewelScanBeanDefaultPar ...

  7. [转]基于Visual Studio 2010 进行敏捷/Scrum模式开发

    http://www.infoq.com/cn/articles/visual-studio-2010-agile-scrum-development 根据Forrester Research今年第二 ...

  8. Java提高篇之常量池

    一.相关概念 1. 什么是常量 用final修饰的成员变量表示常量,值一旦给定就无法改变! final修饰的变量有三种:静态变量.实例变量和局部变量,分别表示三种类型的常量. 2. Class文件中的 ...

  9. Python之如何删除pandas DataFrame的某一/几列

    删除pandas DataFrame的某一/几列: 方法一:直接del DF['column-name']   方法二:采用drop方法,有下面三种等价的表达式: 1. DF= DF.drop('co ...

  10. (转)让IE6/IE7/IE8浏览器支持CSS3属性

    原文链接 http://blog.csdn.net/h5_queenstyle12/article/details/50437442 一.下载 搜索下载:ie-css3.htc,它是让IE浏览器支持C ...