【题目大意】

给定n个人,每个人有一个佣金,i和j如果同时被雇佣会产生2*E(i,j)的效益,i和j如果一个被雇佣一个不被雇佣会产生E(i,j)的亏损,求最大收益。

【思路】

如果没有亏损,其实非常类似这道题:

注意在这类问题里的最小割指代的是损失最小化。对于这道题,我们把S看作雇佣,T看作不雇佣。

首先对于每一个cost[i],从点i出发向汇点连一条流量为cost[i]的边。

对于每一对点(i,j),从S向点i和点j各连一条流量为E(i,j)的边,i和j之间连一条流量为2*E(i,j)的双向边。

ans最初等于矩阵里所有数的和。用ans减去最小割的时候,相当于割边没有被减去,而非割边被减去了。

如果割边是和S相连的,减去后,说明这个人雇佣了,付出了雇佣费,得到了一部分价值。

如果割边是和T相连的,减去后,说明没有雇佣,则没有付出雇佣费也没有得到价值。

那么对于一个被雇佣一个没有被雇佣呢?假设一个的割边与S连,一个的割边与Y连,那么必定会有中间的2*E(i,j)通过两者之间流走,所以他们之间的连边也必定成为割边。相当于得到了E[i,j]的价值,又丧失了2*E[i,j]的价值,总共丧失了E[i,j]的价值,符合题目意识。

dinic不知道为何写挂了,然后把程序里的函数一个一个拷贝到另一个空白界面重新编译了一下就过了,有毒quq没找到原来错在哪里。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define S 0
#define T n+1
using namespace std;
const int MAXN=+;
const int INF=0x7fffffff;
struct node
{
int to,pos,cap;
};
int m,n,ans=;
vector<node> E[MAXN*];
int dis[MAXN],e[MAXN][MAXN],sum[MAXN]; void addedge(int u,int v,int w)
{
E[u].push_back((node){v,E[v].size(),w});
E[v].push_back((node){u,E[u].size()-,});
} void init()
{
scanf("%d",&n);
int cost;
for (int i=;i<=n;i++)
{
scanf("%d",&cost);
addedge(i,T,cost);
}
int Eij;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
scanf("%d",&e[i][j]);
ans+=e[i][j];
if (i!=j)
{
sum[i]+=e[i][j];
addedge(i,j,*e[i][j]);
}
}
for (int i=;i<=n;i++) addedge(S,i,sum[i]);
} bool bfs()
{
memset(dis,-,sizeof(dis));
queue<int> que;
while (!que.empty()) que.pop();
que.push(S);
dis[S]=;
while (!que.empty())
{
int head=que.front();que.pop();
if (head==T) return true;
for (int i=;i<E[head].size();i++)
{
node tmp=E[head][i];
if (dis[tmp.to]==- && tmp.cap)
{
dis[tmp.to]=dis[head]+;
que.push(tmp.to);
}
}
}
return false;
} int dfs(int s,int e,int f)
{
if (s==e) return f;
int ret=;
for (int i=;i<E[s].size();i++)
{
node &tmp=E[s][i];
if (dis[tmp.to]==dis[s]+ && tmp.cap)
{
int delta=dfs(tmp.to,e,min(f,tmp.cap));
if (delta>)
{
tmp.cap-=delta;
E[tmp.to][tmp.pos].cap+=delta;
f-=delta;
ret+=delta;
if (f==) return ret;
}
else dis[tmp.to]=-;
}
}
return ret;
} void dinic()
{
while (bfs())
{
int f=dfs(S,T,INF);
if (f) ans-=f;else break;
}
printf("%d\n",ans);
} int main()
{
init();
dinic();
return ;
}

【最小割】BZOJ2039- [2009国家集训队]employ人员雇佣的更多相关文章

  1. bzoj2039: [2009国家集训队]employ人员雇佣(最小割)

    传送门 膜一下大佬->这里 不难看出这是一个最小割的模型(然而我看不出来) 我们从源点向每一个点连边,容量为他能带来的总收益(也就是他能对其他所有经理产生的贡献) 然后从每一个点向汇点连边,容量 ...

  2. BZOJ2039 [2009国家集训队]employ人员雇佣

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2039 鉴于一开始看题如果不仔细是看不懂题目的,还是说一下题目大意 [题目大意]:给定n个人 ...

  3. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  4. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  5. 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1511  Solved: 728 Descri ...

  6. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  7. bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】

    一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了--把dinic换成isap勉强能卡过 首先因 ...

  8. BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...

  9. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

随机推荐

  1. 2、Web基本介绍及Html语法介绍

    1.1 Web基本介绍 1.web就是world wide web的缩写.称之为全球广域网,俗称www.2.我们可以将web理解为就是当前的一种互联网.对于我们来说更多的就是网站服务.3.网站我们可以 ...

  2. windows安装linux虚拟机、修改apt源

    记录一下windows安装虚拟机以及初始配置的一些坑. 安装VMware Workstation 直接百度搜索VMware,选择合适的版本下载: 按照一般软件的安装步骤安装VMware Worksta ...

  3. 事务的特性——ACID

    在日常操作中,对于一组相关操作通常需要其全部成功或全部失败.在关系型数据库中,这组操作称作为事务.事务具有四种特性:原子性,一致性,隔离性和持久性. 原子性(atomicity):事务必须以一个整体单 ...

  4. C#技术分享【PDF转换成图片——11种方案】

    1.[iTextSharp.dll],C# 开源PDF处理工具,可以任意操作PDF,并可以提取PDF中的文字和图片,但不能直接将PDF转换成图片. DLL和源码 下载地址:http://downloa ...

  5. 模板为webpack的目录结构

    目录结构 | -- build // 项目构建(webpack)相关代码 | |-- build.js // 生产环境构建代码 | |-- check-version.js // 检查node.npm ...

  6. 牛奶ddw如何通过以太坊钱包实现互相打赏

    很多朋友不清楚如何转账ddw,但是万能的网友是无敌的,这两天就自己摸索的一点经验总结下今天的转账经验. 1. 提取到自己的账户 这个大家都知道如何操作,使用官方的钱包 在“日日盈app”中点击&quo ...

  7. u-boot中的Makefile

    在windos下,pc机上电之后,BIOS会初始化硬件配置,为内核传递参数,引导操作系统启动,并且识别C盘.D盘.等整个操作系统启动起来之后,才可以运行应用程序比如QQ.QQ音影.同理,在嵌入式Lin ...

  8. ssh -o 常用选项

    ssh -o ConnectTimeout=3 -o ConnectionAttempts=5 -o PasswordAuthentication=no -o StrictHostKeyCheckin ...

  9. 更换git用户名或密码

    Windows10下更换Git用户名或密码:https://jingyan.baidu.com/article/642c9d3435a6e9644a46f732.html git清除用户名密码 git ...

  10. LeetCode741. Cherry Pickup

    https://leetcode.com/problems/cherry-pickup/description/ In a N x N grid representing a field of che ...