【题目大意】

给定n个人,每个人有一个佣金,i和j如果同时被雇佣会产生2*E(i,j)的效益,i和j如果一个被雇佣一个不被雇佣会产生E(i,j)的亏损,求最大收益。

【思路】

如果没有亏损,其实非常类似这道题:

注意在这类问题里的最小割指代的是损失最小化。对于这道题,我们把S看作雇佣,T看作不雇佣。

首先对于每一个cost[i],从点i出发向汇点连一条流量为cost[i]的边。

对于每一对点(i,j),从S向点i和点j各连一条流量为E(i,j)的边,i和j之间连一条流量为2*E(i,j)的双向边。

ans最初等于矩阵里所有数的和。用ans减去最小割的时候,相当于割边没有被减去,而非割边被减去了。

如果割边是和S相连的,减去后,说明这个人雇佣了,付出了雇佣费,得到了一部分价值。

如果割边是和T相连的,减去后,说明没有雇佣,则没有付出雇佣费也没有得到价值。

那么对于一个被雇佣一个没有被雇佣呢?假设一个的割边与S连,一个的割边与Y连,那么必定会有中间的2*E(i,j)通过两者之间流走,所以他们之间的连边也必定成为割边。相当于得到了E[i,j]的价值,又丧失了2*E[i,j]的价值,总共丧失了E[i,j]的价值,符合题目意识。

dinic不知道为何写挂了,然后把程序里的函数一个一个拷贝到另一个空白界面重新编译了一下就过了,有毒quq没找到原来错在哪里。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define S 0
#define T n+1
using namespace std;
const int MAXN=+;
const int INF=0x7fffffff;
struct node
{
int to,pos,cap;
};
int m,n,ans=;
vector<node> E[MAXN*];
int dis[MAXN],e[MAXN][MAXN],sum[MAXN]; void addedge(int u,int v,int w)
{
E[u].push_back((node){v,E[v].size(),w});
E[v].push_back((node){u,E[u].size()-,});
} void init()
{
scanf("%d",&n);
int cost;
for (int i=;i<=n;i++)
{
scanf("%d",&cost);
addedge(i,T,cost);
}
int Eij;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
scanf("%d",&e[i][j]);
ans+=e[i][j];
if (i!=j)
{
sum[i]+=e[i][j];
addedge(i,j,*e[i][j]);
}
}
for (int i=;i<=n;i++) addedge(S,i,sum[i]);
} bool bfs()
{
memset(dis,-,sizeof(dis));
queue<int> que;
while (!que.empty()) que.pop();
que.push(S);
dis[S]=;
while (!que.empty())
{
int head=que.front();que.pop();
if (head==T) return true;
for (int i=;i<E[head].size();i++)
{
node tmp=E[head][i];
if (dis[tmp.to]==- && tmp.cap)
{
dis[tmp.to]=dis[head]+;
que.push(tmp.to);
}
}
}
return false;
} int dfs(int s,int e,int f)
{
if (s==e) return f;
int ret=;
for (int i=;i<E[s].size();i++)
{
node &tmp=E[s][i];
if (dis[tmp.to]==dis[s]+ && tmp.cap)
{
int delta=dfs(tmp.to,e,min(f,tmp.cap));
if (delta>)
{
tmp.cap-=delta;
E[tmp.to][tmp.pos].cap+=delta;
f-=delta;
ret+=delta;
if (f==) return ret;
}
else dis[tmp.to]=-;
}
}
return ret;
} void dinic()
{
while (bfs())
{
int f=dfs(S,T,INF);
if (f) ans-=f;else break;
}
printf("%d\n",ans);
} int main()
{
init();
dinic();
return ;
}

【最小割】BZOJ2039- [2009国家集训队]employ人员雇佣的更多相关文章

  1. bzoj2039: [2009国家集训队]employ人员雇佣(最小割)

    传送门 膜一下大佬->这里 不难看出这是一个最小割的模型(然而我看不出来) 我们从源点向每一个点连边,容量为他能带来的总收益(也就是他能对其他所有经理产生的贡献) 然后从每一个点向汇点连边,容量 ...

  2. BZOJ2039 [2009国家集训队]employ人员雇佣

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2039 鉴于一开始看题如果不仔细是看不懂题目的,还是说一下题目大意 [题目大意]:给定n个人 ...

  3. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  4. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  5. 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1511  Solved: 728 Descri ...

  6. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  7. bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】

    一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了--把dinic换成isap勉强能卡过 首先因 ...

  8. BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...

  9. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

随机推荐

  1. Java 中的几种线程池这么用才是对的

    为什么要使用线程池 虽然大家应该都已经很清楚了,但还是说一下.其实归根结底最主要的一个原因就是为了提高性能. 线程池和数据库连接池是同样的道理,数据库连接池是为了减少连接建立和释放带来的性能开销.而线 ...

  2. js base64加密解密

    var base64EncodeChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" ...

  3. 仿360影视网站模板html

    链接:http://pan.baidu.com/s/1mhIkV4s 密码:9wgq

  4. ISG2018 web题Writeup

    0x01.命令注入 这题可以使用burpsuite扫出来,但是可能需要测一下. 得知payload为:i%7cecho%20gzavvlsv9c%20q9szmriaiy%7c%7ca%20%23'% ...

  5. 47、求1+2+3+...+n

    一.题目 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 二.解法 public class Solut ...

  6. Cookie、Session 和 自定义分页

    cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...

  7. Python3中对Dict的内存优化

    众所周知,python3.6这个版本对dict的实现是做了较大优化的,特别是在内存使用率方面,因此我觉得有必要研究一下最新的dict的源码实现. 前后断断续续看了大概一周多一点,主要在研究dict和创 ...

  8. 一起来学redis(一)

    redis是一个开源的,高性能的,基于键值对的缓存与存储系统通过提供多种键值数据类型来适应不同场景下的缓存与存储需求. 同时redis的诸多高层级功能使其可以胜任消息队列,任务队列等不同的角色. 特性 ...

  9. Python基础之杂货铺

    字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-310 ...

  10. RSA加密登录

    1.首先下载前端JS加密框架:jsencrypt 2.后台添加解密帮助类:RSACrypto(参考文章最后) 3.在登录页面先引入jquery.min.js,在引入jsencrypt.min.js 4 ...