扩展gcd-时间复杂性

题目内容:
计算循环语句的执行频次 for(i=A; i!=B ; i+=C) x+=1;
其中A,B,C,i都是k位无符号整数。
输入描述
A B C k, 其中0<k<32
输出描述
输出执行频次数,如果是无穷,则输出“forever”
输入样例
3 7 2 16
输出样例2
看到题还是很蒙蔽,虽然提示了知识点:
gcd(a,b)为求a,b的最大公约数;
ex_gcd(a,b,x,y)则是求 ax + by = gcd(a,b)的一组解
由ax + by = gcd(a,b) 和 ax1 + by1 = c 就可以求后一个方程的解了:x1 = x * (n / gcd(a,b)), y1 = y * (n / gcd(a,b));
但注意:先计算Gcd(a,b),若c不能被Gcd(a,b)整除,则方程无整数解
此时 x1,y1只是方程 ax + by = c的一组解,他们的通解为
x = x0 + tn;
y = y0 - tm;
(x0, y0为最正小整数解)
则有 a(x0 + tn) + b(y0 - tm) = c,同时又有ax0 + by0 = c,化简上式子:
a*t*n - b*t*m = 0;

则 an = bm 要想n,m最小就是使得an,bm都为a,b的最小公倍数:
an = (a*b)/gcd(a,b) -> n = b/gcd(a,b);
同理:m = a /gcd(a,b);
则:x0 = (x % n + n)%n;
y0 = (y % m + m)%m;
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
//#define LL long long
typedef long long LL;
LL gcd(LL a, LL b)
{
return b == 0 ? a : gcd(b, a%b);
} LL ex_gcd(LL a, LL b, LL &x, LL &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
LL ans = ex_gcd(b, a%b, x, y);
LL temp = x;
x = y;
y = temp - a / b*y;
return ans;
} int main(){
LL A, B, C, k;
cin >> A >> B >> C >> k;
LL a = C, n = B - A, x, y; //b = pow(2,k),
//b改成b = 1 << k就会出错
LL d = 1;
LL b = d << k;
cout << "b: " << b << endl;
int gc = gcd(a,b);
if(A == 0 && B == 0){
cout << 0 << endl;
return 0;
}
if(C == 0 || gc == 0 || n % gc != 0){
cout << "forever" << endl;
return 0;
}
ex_gcd(a,b,x,y); //返回ax + by = gcd(a,b)的解
x = x * (n / gc); //得到通解x即:ax + by = n
LL nn = b / gc; //通解x的最小周期
x = (x % nn + nn) % nn; //得到最小解
cout << x << endl;
return 0;
}

  




75-扩展GCD-时间复杂度的更多相关文章

  1. UESTC 288 青蛙的约会 扩展GCD

    设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L ...

  2. Poj 1061 青蛙的约会(扩展GCD)

    题目链接:http://poj.org/problem?id=1061 解题报告:两只青蛙在地球的同一条纬度线上,选取一个点位坐标轴原点,所以现在他们都在同一个首尾相连的坐标轴上,那么他们现在的位置分 ...

  3. poj 1061 青蛙的约会(扩展gcd)

    题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...

  4. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  5. BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

    BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...

  6. 扩展gcd算法

    扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x ...

  7. 扩展gcd codevs 1200 同余方程

    codevs 1200 同余方程 2012年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 求关 ...

  8. 学习:数学----gcd及扩展gcd

    gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+ ...

  9. POJ2115 C Looooops ——模线性方程(扩展gcd)

    题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  10. POJ 1061 青蛙的约会(扩展GCD求模线性方程)

    题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...

随机推荐

  1. python中format函数学习笔记

    简而言之,format函数就是用{}来代替之前的输出字符时使用的% print('my name is %s and I am %d years old' % ('porsche',23)) 下面详细 ...

  2. (转)Inno Setup入门(十)——操作注册表

    本文转载自:http://blog.csdn.net/yushanddddfenghailin/article/details/17250871 有些程序需要随系统启动,或者需要建立某些文件关联等问题 ...

  3. NFS的安装以及windows/linux挂载linux网络文件系统NFS

    1.创建linux的NFS服务端安装centos6.4,关闭防火墙/etc/init.d/iptables status yum install nfs-utils rpcbind [root@lin ...

  4. APP推送通知相关实现

      关于推送通知,iOS推送主要是通过服务端来实现的,相关过程可以参考下面两篇文章:   http://cshbbrain.iteye.com/blog/1859810   http://zxs198 ...

  5. iframe显示跨域url页面

    可以通过JS搞定跨域问题,但是比较麻烦,我就在后台处理了,其实这样本质上也算不上是跨域了 后台otherwebsite.php: <?php $url="www.otherwebsit ...

  6. css 定位position总结

    在CSS中,Position 属性经常会用到,主要是绝对定位和相对定位,简单的使用都没有问题,尤其嵌套起来,就会有些混乱,今记录总结一下,防止久而忘之. CSS position 属性值: absol ...

  7. PowerMock单元测试

    在Java程序的单元测试中常用的mock工具有Mockito和EasyMock.但是这两种mock工具都无法实现对静态.final.私有方法或类的mock.因此有了功能强大的PowerMock工具.P ...

  8. JoinableQueue

    #!/usr/bin/env python # encoding: utf-8  # Date: 2018/6/17import timefrom multiprocessing import Pro ...

  9. 连接ES的Java项目报Too many open files错误

    启动后查询open files 数量 lsof -p TOMCAT_PID | grep wc -l 结果大概是一千多,但是短短数小时后就会涨到8k以上,所以使用网上很多朋友通过执行ulimit -n ...

  10. Mybit错误,提示There is no getter for property named 'tid' in 'class java.lang.String'

    改成 <select id="queryStudentByNum" resultType="student" parameterType="st ...