[Compose] 15. Applicative Functors for multiple arguments
Working our way backwards from solution to problem, we define an applicative functor, then use it to apply a function of multiple arguments.
For example we have this line of code:
const res = Box(x => x +).ap(Box())// Box(3);
We want to use a funciton 'ap' (apply) on Box. And x will be 2.
To define 'ap' function.
const Box = x =>
({
chain: f => f(x),
ap: other => other.map(x),
map: f => Box(f(x)),
fold: f => f(x),
inspect: () => `Box(${x})`
})
So '
Box(x => x +1).ap(Box(2))
'
Can be translated to:
Box() => Box().map(x => x + );
This can be useful when apply curry function:
const res = Box(x => y => x + y).ap(Box()).ap(Box());
console.log(res.inspect()); //Box(3)
after apply .ap(Box(1)), it becomes to:
Box(y => 1 +y).ap(Box(2))
after apply .ap(Box(2)), it becomes to:
Box( + )
It ends up, we have a function and continue to using 'ap':
const add = x => y => x + y;
const res = Box(add).ap(Box()).ap(Box());
This partten is called click-functor!
The rule is:
F(val).map(fn) === F(fn).ap(F(val))
For example now we have:
const liftA2 = (fn, Fx, Fy) =>
F(fn).ap(Fx).ap(Fy);
The problem is we don't know what 'F' it is here...
So what we can do is transform accorind to the rule we have:
const liftA2 = (fn, Fx, Fy) =>
Fx.map(fn).ap(Fy)
Therefore we don't need to memtion any Functor.
Example:
const res2 = liftA2(add, Box(), Box());
console.log(res2.inspect()); //Box(3)
Applicate Functor is really good to work with Async functor, because async by natural, data arrives different time:
const add = x => y => z=> x + y + z;
const addAsyncNumbers = liftA3(add);
const res = addAsyncNumbers(
Async.of(),
Async((_, res) => {
setTimeout(() => {
console.log('resolve 2');
res()
}, )
}), Async((_, res) => {
setTimeout(() => {
console.log('resolve 3');
res()
}, )
}));
res.fork(e => console.error(e), x => console.log('async', x)) //
[Compose] 15. Applicative Functors for multiple arguments的更多相关文章
- [Compose] 17. List comprehensions with Applicative Functors
We annihilate the need for the ol' nested for loop using Applicatives. For example we have this kind ...
- [Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap
What is applicative functor: the ability to apply functors to each other. For example we have tow fu ...
- [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN
Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...
- redux源码阅读之compose,applyMiddleware
我的观点是,看别人的源码,不追求一定要能原样造轮子,单纯就是学习知识,对于程序员的提高就足够了.在阅读redux的compose源码之前,我们先学一些前置的知识. redux源码阅读之compose, ...
- Redux源码分析之compose
Redux源码分析之基本概念 Redux源码分析之createStore Redux源码分析之bindActionCreators Redux源码分析之combineReducers Redux源码分 ...
- javac之Inferring Type Arguments Based on Actual Arguments
We use the following notational conventions in this section: Type expressions are represented using ...
- 小白日记15:kali渗透测试之弱点扫描-漏扫三招、漏洞管理、CVE、CVSS、NVD
发现漏洞 弱点发现方法: 1.基于端口服务扫描结果版本信息,比对其是否为最新版本,若不是则去其 官网查看其补丁列表,然后去逐个尝试,但是此法弊端很大,因为各种端口应用比较多,造成耗时大. 2.搜索已公 ...
- [转载] google mock cookbook
原文: https://code.google.com/p/googlemock/wiki/CookBook Creating Mock Classes Mocking Private or Prot ...
- 译:Spring框架参考文档之IoC容器(未完成)
6. IoC容器 6.1 Spring IoC容器和bean介绍 这一章节介绍了Spring框架的控制反转(IoC)实现的原理.IoC也被称作依赖注入(DI).It is a process wher ...
随机推荐
- Django 和 html
下面是对应的形式,自定义的forms
- 隐马尔可夫模型(Hidden Markov Model)
隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...
- Unity 2D游戏开发教程之为游戏场景添加多个地面
Unity 2D游戏开发教程之为游戏场景添加多个地面 为游戏场景添加多个地面 显然,只有一个地面的游戏场景太小了,根本不够精灵四处活动的.那么,本节就来介绍一种简单的方法,可以为游戏场景添加多个地面. ...
- HDU2874【倍增、ST】
题目链接[https://vjudge.net/problem/HDU-2874] 题意: 输入一个森林,总节点不超过N(N<10000),由C次询问(C<1000000),每次询问两个点 ...
- 【CF contest/792/problem/E】
E. Colored Balls time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- serializable parcelable
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha 在使用 内存的 时候,parcelable 比 serializable 性能高. pa ...
- POJ3233 Matrix Power Series 矩阵乘法
http://poj.org/problem?id=3233 挺有意思的..学习到结构体作为变量的转移, 题意 : 给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加 ...
- bzoj 2565: 最长双回文串 manacher算法
2565: 最长双回文串 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...
- Windows Sysinternals Suite
Windows Sysinternals Suite 是一套由微软官方免费提供的系统工具集,其中包含了大量超级实的优秀绿色小软件,譬如 Desktops (虚拟桌面).Process Explorer ...
- CentOS依赖包查找工具(https://centos.pkgs.org)
https://centos.pkgs.org 通过这个地址,可以搜索出一些常用包放在哪些依赖或者仓库上.