Working our way backwards from solution to problem, we define an applicative functor, then use it to apply a function of multiple arguments.

For example we have this line of code:

const res = Box(x => x +).ap(Box())// Box(3);

We want to use a funciton 'ap' (apply) on Box. And x will be 2.

To define 'ap' function.

const Box = x =>
({
chain: f => f(x),
ap: other => other.map(x),
map: f => Box(f(x)),
fold: f => f(x),
inspect: () => `Box(${x})`
})

So '

Box(x => x +1).ap(Box(2))

'

Can be translated to:

Box() => Box().map(x => x + );

This can be useful when apply curry function:

const res = Box(x => y => x + y).ap(Box()).ap(Box());
console.log(res.inspect()); //Box(3)

after apply .ap(Box(1)), it becomes to:

Box(y => 1 +y).ap(Box(2))

after apply .ap(Box(2)), it becomes to:

Box( + )

It ends up, we have a function and continue to using 'ap':

const add = x => y => x + y;
const res = Box(add).ap(Box()).ap(Box());

This partten is called click-functor!

The rule is:

F(val).map(fn) === F(fn).ap(F(val))

For example now we have:

const liftA2 = (fn, Fx, Fy) =>
F(fn).ap(Fx).ap(Fy);

The problem is we don't know what 'F' it is here...

So what we can do is transform accorind to the rule we have:

const liftA2 = (fn, Fx, Fy) =>
Fx.map(fn).ap(Fy)

Therefore we don't need to memtion any Functor.

Example:

const res2 = liftA2(add, Box(), Box());
console.log(res2.inspect()); //Box(3)

Applicate Functor is really good to work with Async functor, because async by natural, data arrives different time:

const add = x => y => z=> x + y + z;
const addAsyncNumbers = liftA3(add);
const res = addAsyncNumbers(
Async.of(),
Async((_, res) => {
setTimeout(() => {
console.log('resolve 2');
res()
}, )
}), Async((_, res) => {
setTimeout(() => {
console.log('resolve 3');
res()
}, )
}));
res.fork(e => console.error(e), x => console.log('async', x)) //

[Compose] 15. Applicative Functors for multiple arguments的更多相关文章

  1. [Compose] 17. List comprehensions with Applicative Functors

    We annihilate the need for the ol' nested for loop using Applicatives. For example we have this kind ...

  2. [Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap

    What is applicative functor: the ability to apply functors to each other. For example we have tow fu ...

  3. [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN

    Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...

  4. redux源码阅读之compose,applyMiddleware

    我的观点是,看别人的源码,不追求一定要能原样造轮子,单纯就是学习知识,对于程序员的提高就足够了.在阅读redux的compose源码之前,我们先学一些前置的知识. redux源码阅读之compose, ...

  5. Redux源码分析之compose

    Redux源码分析之基本概念 Redux源码分析之createStore Redux源码分析之bindActionCreators Redux源码分析之combineReducers Redux源码分 ...

  6. javac之Inferring Type Arguments Based on Actual Arguments

    We use the following notational conventions in this section: Type expressions are represented using ...

  7. 小白日记15:kali渗透测试之弱点扫描-漏扫三招、漏洞管理、CVE、CVSS、NVD

    发现漏洞 弱点发现方法: 1.基于端口服务扫描结果版本信息,比对其是否为最新版本,若不是则去其 官网查看其补丁列表,然后去逐个尝试,但是此法弊端很大,因为各种端口应用比较多,造成耗时大. 2.搜索已公 ...

  8. [转载] google mock cookbook

    原文: https://code.google.com/p/googlemock/wiki/CookBook Creating Mock Classes Mocking Private or Prot ...

  9. 译:Spring框架参考文档之IoC容器(未完成)

    6. IoC容器 6.1 Spring IoC容器和bean介绍 这一章节介绍了Spring框架的控制反转(IoC)实现的原理.IoC也被称作依赖注入(DI).It is a process wher ...

随机推荐

  1. Django 和 html

    下面是对应的形式,自定义的forms

  2. 隐马尔可夫模型(Hidden Markov Model)

    隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...

  3. Unity 2D游戏开发教程之为游戏场景添加多个地面

    Unity 2D游戏开发教程之为游戏场景添加多个地面 为游戏场景添加多个地面 显然,只有一个地面的游戏场景太小了,根本不够精灵四处活动的.那么,本节就来介绍一种简单的方法,可以为游戏场景添加多个地面. ...

  4. HDU2874【倍增、ST】

    题目链接[https://vjudge.net/problem/HDU-2874] 题意: 输入一个森林,总节点不超过N(N<10000),由C次询问(C<1000000),每次询问两个点 ...

  5. 【CF contest/792/problem/E】

    E. Colored Balls time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  6. serializable parcelable

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha 在使用 内存的 时候,parcelable 比 serializable 性能高. pa ...

  7. POJ3233 Matrix Power Series 矩阵乘法

    http://poj.org/problem?id=3233 挺有意思的..学习到结构体作为变量的转移, 题意 : 给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加 ...

  8. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  9. Windows Sysinternals Suite

    Windows Sysinternals Suite 是一套由微软官方免费提供的系统工具集,其中包含了大量超级实的优秀绿色小软件,譬如 Desktops (虚拟桌面).Process Explorer ...

  10. CentOS依赖包查找工具(https://centos.pkgs.org)

    https://centos.pkgs.org 通过这个地址,可以搜索出一些常用包放在哪些依赖或者仓库上.