题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757

按照题目的要求构造矩阵

//Author: xiaowuga
//矩阵:
//a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 9
// 1 0 0 0 0 0 0 0 0 0 8
// 0 1 0 0 0 0 0 0 0 0 7
// 0 0 1 0 0 0 0 0 0 0 6
// 0 0 0 1 0 0 0 0 0 0 5
// 0 0 0 0 1 0 0 0 0 0 4
// 0 0 0 0 0 1 0 0 0 0 3
// 0 0 0 0 0 0 1 0 0 0 2
// 0 0 0 0 0 0 0 1 0 0 1
// 0 0 0 0 0 0 0 0 1 0 0
#include <bits/stdc++.h>
#define maxx INT_MAX
#define minn INT_MIN
#define inf 0x3f3f3f3f
#define N 10
using namespace std;
typedef long long ll;
int k,MOD;
int arr[N],f[N];
struct Matrix{
ll mat[N][N];
//重定向乘法
Matrix operator*(const Matrix &m)const{
Matrix tmp;
for(int i=;i<N;i++)
for(int j=;j<N;j++){
tmp.mat[i][j]=;
for(int k=;k<N;k++){
tmp.mat[i][j]+=mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j]%=MOD;
}
}
return tmp;
}
};
ll POW(Matrix &m,int k){
Matrix ans;
memset(ans.mat,,sizeof(ans.mat));
for(int i=;i<N;i++) ans.mat[i][i]=;
k-=;
while(k){
if(k&) ans=ans*m;
k/=;
m=m*m;
}
ll sum=;
for(int i=;i<N;i++){
sum+=ans.mat[][i]*f[N-i-]%MOD;
sum%=MOD;
}
return sum;
}
void init(Matrix &m){
memset(m.mat,,sizeof(m.mat));
for(int i=;i<N;i++) m.mat[][i]=arr[i];
for(int i=;i<N-;i++) m.mat[i+][i]=;
for(int i=;i<N;i++) f[i]=i;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
Matrix m;
while(cin>>k>>MOD){
for(int i=;i<N;i++) cin>>arr[i];
init(m);
if(k<) cout<<k%MOD<<endl;
else cout<<POW(m,k)<<endl;
}
return ;
}

HDU1757又是一道矩阵快速幂模板题的更多相关文章

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. hdu 2604 矩阵快速幂模板题

    /* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f( ...

  3. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

  4. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  5. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  6. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

  7. hdu1575 Tr A 矩阵快速幂模板题

    hdu1575   TrA 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 都不需要构造矩阵,矩阵是题目给的,直接套模板,把对角线上的数相加就好 ...

  8. 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

  9. POJ3070:Fibonacci(矩阵快速幂模板题)

    http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...

随机推荐

  1. C# 获得文件名

    string strFilePaht="文件路径"; Path.GetFileNameWithoutExtension(strFilePath);这个就是获取文件名的 还有的就是用 ...

  2. mplayer 全屏问题

    [root@ok home]# gedit ~/.mplayer/config # Write your default config options here! zoom=yes #加上这个参数!全 ...

  3. python 获取当前时间的用法

    1.先导入库:import datetime 2.获取当前日期和时间:now_time = datetime.datetime.now() 3.格式化成我们想要的日期:strftime() 比如:“2 ...

  4. Python3制作中文词云图

    1. 准备好文本数据 2. pip install jieba 3. pip install wordcloud 4. 下载字体例如Songti.ttc(mac系统下的称呼,并将字体放在项目文件夹下) ...

  5. phoenix系统创建语句

    CREATE TABLE SYSTEM."CATALOG"( TENANT_ID VARCHAR NULL, TABLE_SCHEM VARCHAR NULL, TABLE_NAM ...

  6. sparksql 操作hive

    写在前面:hive的版本是1.2.1spark的版本是1.6.x http://spark.apache.org/docs/1.6.1/sql-programming-guide.html#hive- ...

  7. [网络]Linux一些网络知识

    今天刚搬到新家,ubuntu一启动,无线网络又连不上了,之前就是大费周折才搞好的,于是又花了两小时才搞好. 下面就先来了解一些基础知识: 1. ifconfig输出的eth0/lo/wlan0分别代表 ...

  8. telnet 登陆的方法

    第一种方式:通过inetd启动telnetd服务 必须这样设置busybox配置    Networking Utilities --->        去掉 [ ]   Support sta ...

  9. hive表分区的修复

    hive从低版本升级到高版本或者做hadoop的集群数据迁移时,需要重新创建表和表分区,由于使用的是动态分区,所以需要重新刷新分区表字段,否则无法查看数据. 在hive中执行中以下命令即可自动更新元数 ...

  10. hdu6134 Battlestation Operational 莫比乌斯第一种形式

    /** 题目:hdu6134 Battlestation Operational 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意:f(n) = ...