【BZOJ】2134: 单选错位 期望DP
【题意】有n道题,第i道题有ai个选项。把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题。n<=10^7。
【算法】期望DP
【题解】正确答案的随机分布不受某道题填到后面是否正确影响,因此每道题对的期望都是独立的。
从排列的角度分析,对每道题有a[i-1]个选择和a[i]个选项,共a[i-1]*a[i]种排列,其中只有min(a[i-1],ai)种排列使这道题正确,所以
$$E(i)=\frac{Min(a[i-1],a[i])}{a[i-1]*a[i]}=\frac{1}{Max(a[i-1],a[i])}$$
然后根据期望的线性相加。
复杂度O(n)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int n,a[maxn];
int main()
{
int A,B,C;
scanf("%d%d%d%d%d",&n,&A,&B,&C,&a[]);
for (int i=;i<=n;i++) a[i] = ((long long)a[i-] * A + B) % ;
for (int i=;i<=n;i++) a[i] = a[i] % C + ;
a[]=a[n];
double ans=;
for(int i=;i<=n;i++)ans+=1.0/max(a[i],a[i-]);
printf("%.3lf",ans);
return ;
}
如果实在纠结前面题对和后面题对有一题重合,考虑期望可以线性相加,所以实际上是可以拆出来计算的。
【BZOJ】2134: 单选错位 期望DP的更多相关文章
- BZOJ 2134 单选错位 ——期望DP
发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...
- BZOJ 2134: 单选错位( 期望 )
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...
- BZOJ_2134_单选错位——期望DP
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...
- bzoj 2134 单选错位(期望)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. ...
- BZOJ——2134: 单选错位
http://www.lydsy.com/JudgeOnline/problem.php?id=2134 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: ...
- 【刷题】BZOJ 2134 单选错位
Description Input n很大,为了避免读入耗时太多, 输入文件只有5个整数参数n, A, B, C, a1, 由上交的程序产生数列a. 下面给出pascal/C/C++的读入语句和产生序 ...
- [ BZOJ 2134 ] 单选错位
\(\\\) \(Description\) 一共\(N\)道题目,第\(i\)道题有\(A_i\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((\)第\( ...
- Bzoj 2134: [国家集训队2011]单选错位(期望)
2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
随机推荐
- lintcode-477-被围绕的区域
477-被围绕的区域 给一个二维的矩阵,包含 'X' 和 'O', 找到所有被 'X' 围绕的区域,并用 'X' 填充满. 样例 给出二维矩阵: X X X X X O O X X X O X X O ...
- 安装libvirt管理套件(C/S架构模式,用户管理kvm虚拟机)
# 1:安装程序包 yum install -y libvirt virt-manager virt-viewer virt-install qemu-kvm # 2:启动libvirtd守护进程 ...
- 201621123037 《Java程序设计》第4周学习总结
#Week04-面向对象设计与继承 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键词:超级父类."is-a".父类.子类.重载.继承.多态 1.2 尝 ...
- USB硬件接口相关
1.USB 设备端的D+为何要拉一个1.5K电阻到3.3v上?(USB是5v供电,但通信的电平是3.3v,所以上拉电平为3.3v:若要上拉到5v,则上拉电阻为10k) usb有主从设备之分,主设备有: ...
- 【uoj#21】[UR #1]缩进优化 数学
题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...
- wp开发(一)--应用发布篇
本文非常简单,适合刚刚刚刚入门的菜鸟,且针对的是wp8版本.wp8应用的发布总体来说没什么难度,只是有几个值得注意的地方,希望本文可以减少菜鸟们不必要的担心. 首先假设项目已经完成,且要发布到应用商城 ...
- BZOJ4922 Karp-de-Chant Number(贪心+动态规划)
首先将每个括号序列转化为三元组(ai,bi,ci),其中ai为左括号-右括号数量,bi为前缀最小左括号-右括号数,ci为序列长度.问题变为在满足Σai=0,bi+Σaj>=0 (j<i)的 ...
- NewCaffe
NewCaffe
- LiveCD及Casper调研
1.LiveCD原理 LiveCD本质上是ISO 9660/El Torito格式的CD-ROM. 下面对LiveCD涉及的各种技术做了简单的调研. 1.1. CD-ROM CD-ROM是一种光盘存储 ...
- move_base的 局部路径规划代码研究
base_local_planner teb_local_planner parameter code g2o base_local_planner ROS wiki Given a plan to ...